Publications by authors named "Arun K G"

Mammalian lipoxygenases (LOXs) are involved in the biosynthesis of mediators of anaphylactic reactions and have been implicated in cell maturation, the pathogenesis of bronchial asthma, atherosclerosis, rheumatoid arthritis, cardiovascular diseases, Alzheimer's disease and osteoporosis. Hence LOX inhibition in chronic conditions can lead to reducing the disease progression, which can be a good target for treating these diseases. The present study deals with designing methyl gallate derivatives and their anti-inflammatory effect by in silico, in vitro and in vivo methods.

View Article and Find Full Text PDF

Serine proteases are a class of hydrolytic enzymes involved in various physiological functions like digestion, coagulation, fibrinolysis and immunity. The present study evaluates the serine protease inhibitory potential of phytochemicals liquiritin and terpinen-4-ol present in the herb L. using trypsin as the model enzyme.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates compact binary coalescences with at least one component mass between 0.2 and 1.0 solar masses using data from Advanced LIGO and Advanced Virgo detectors over six months in 2019, but they found no significant gravitational wave candidates.
  • The analysis leads to an upper limit on the merger rate of subsolar binaries ranging from 220 to 24,200 Gpc⁻³ yr⁻¹, based on the detected signals’ false alarm rate.
  • The researchers use these limits to set new constraints on two models for subsolar-mass compact objects: primordial black holes (suggesting they make up less than 6% of dark matter) and
View Article and Find Full Text PDF

Background: The superficial temporal artery to middle cerebral artery bypass remains the favoured direct technique of cerebral revascularization in moyamoya angiopathy. We describe a novel technique of tunnelling the superficial temporal artery through the temporalis muscle.

Methods: The temporalis muscle is raised as a flap off the temporal bone.

View Article and Find Full Text PDF

In this Letter, we show that multiband observations of stellar-mass binary black holes by the next generation of ground-based observatories (3G) and the space-based Laser Interferometer Space Antenna (LISA) would facilitate a comprehensive test of general relativity by simultaneously measuring all the post-Newtonian coefficients. Multiband observations would measure most of the known post-Newtonian phasing coefficients to an accuracy below a few percent-2 orders-of-magnitude better than the best bounds achievable from even "golden" binaries in the 3G or LISA bands. Such multiparameter bounds would play a pivotal role in constraining the parameter space of modified theories of gravity beyond general relativity.

View Article and Find Full Text PDF

We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star-black hole, and binary black hole systems.

View Article and Find Full Text PDF
Article Synopsis
  • On May 21, 2019, Advanced LIGO and Virgo detected a significant gravitational-wave signal known as GW190521, indicating a high probability event with a low chance of false alarms.
  • The signal suggests it resulted from the merger of two black holes, one around 85 solar masses and the other about 66 solar masses, with the primary black hole likely being an intermediate mass black hole.
  • The source of the merger is estimated to be about 5.3 billion light-years away, and the rate of similar black hole mergers is estimated to be about 0.13 mergers per billion cubic parsecs per year.
View Article and Find Full Text PDF

The world has come to a sudden halt due to the incessant spread of a viral pneumonia dubbed COVID-19 caused by the beta-coronavirus, SARS-CoV-2. The main protease of SARS-CoV-2 plays a key role in the replication and propagation of the virus in the host cells. Inhibiting the protease blocks the replication of the virus; therefore it is considered as an attractive therapeutic target.

View Article and Find Full Text PDF

Since its first report in December 2019 from China, the COVID-19 pandemic caused by the beta-coronavirus SARS-CoV-2 has spread at an alarming pace infecting about 5.59 million, and claiming the lives of more than 0.35 million individuals across the globe.

View Article and Find Full Text PDF

Lipoxygenases (LOXs) are potential treatment targets in a variety of inflammatory conditions. It is assumed that blocking the arachidonic acid (AA) metabolism via COX inhibition by either traditional NSAIDs or selective cyclooxygenase-2 (COX-2) inhibitors could lead to the generation of pro-inflammatory leukotrienes and lipoxins via the LOX pathway, partly accounting for the side effects seen with traditional NSAIDs and selective COX-2 inhibitors. To counter this, several LOX, phospholipase A (PLA) inhibitors have been reported nowadays from natural sources.

View Article and Find Full Text PDF

Adenosine deaminase (ADA) is an enzyme present in purine metabolic pathway. Its inhibitors are considered to be potent drug lead compounds against inflammatory and malignant diseases. This study aimed to test ADA inhibitory activity of some Streptomyces secondary metabolites by using computational and methods.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the existence of subsolar mass ultracompact objects by analyzing data from Advanced LIGO's second observing run and includes the impact of spin on gravitational waves.
  • No suitable gravitational-wave candidates were found for binaries with at least one component between 0.2 and 1.0 solar masses, leading to significant constraints on their binary merger rates.
  • The findings suggest that such ultracompact objects likely do not form through conventional stellar evolution, and they outline how these constraints on merger rates can be applied to different black hole population models that predict subsolar mass binaries.
View Article and Find Full Text PDF

Epigallocatechin gallate, a flavonoid from Camellia sinensis possess various pharmacological activities such as anticancer, antimicrobial and antioxidant etc. Adenosine deaminase, (ADA), is a key enzyme involved in the purine metabolism, the inhibitors of which is being considered as highly promising candidate for the development of anti-proliferative and anti-inflammatory drugs. In this work we studied adenosine deaminase inhibitory activity of epigallocatechin gallate by using biophysical and computational methods.

View Article and Find Full Text PDF

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in the presence of matter. In this Letter, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime.

View Article and Find Full Text PDF

sPLA is released under inflammatory conditions from neutrophils, basophils and T-cells. They cleave the cellular phospholipids leading to the release of arachidonic acid and there by provide intermediates for biosynthesis of inflammatory mediators. The focus of this study is on the interaction of hesperidin, a natural flavonoid with Group IB, IIA, and V and X isozymes of sPLA.

View Article and Find Full Text PDF

We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: an overall amplitude, a saturation frequency, and a spectral index.

View Article and Find Full Text PDF

We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2  M_{⊙}-1.0  M_{⊙} using data taken between September 12, 2015 and January 19, 2016.

View Article and Find Full Text PDF

On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii.

View Article and Find Full Text PDF

Methyl gallate was purified, by lipoxygenase (LOX) inhibitory activity-guided method since its alleged anti-inflammatory property, from Bergenia ligulata (Wall), a plant used in the traditional, Ayurvedic system of medicine extensively. The LOX inhibitory property of methyl gallate was studied by enzyme kinetics, isothermal titration calorimetry and molecular docking followed by molecular simulation studies. The wet-laboratory experiments and in silico studies showed complete agreement, and promise of methyl gallate as a drug-lead molecular scaffold for anti-inflammatory therapy, based on LOX inhibition.

View Article and Find Full Text PDF

Adenosine deaminase (ADA) is one of the major enzymes involved in purin metabolism, it has a significant role in cell growth and differentiation. Over-activity of ADA has been noticed in some pathology, like malignancy and inflammation and makes it an attractive target for the development of drugs for such diseases. In the present study, ADA inhibitory activity of morin, a bioactive flavonoid, was assessed through computational and biophysical methods.

View Article and Find Full Text PDF

We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy.

View Article and Find Full Text PDF

The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations.

View Article and Find Full Text PDF
Article Synopsis
  • * The analysis focused on detecting continuous signals from pulsars and did not depend on any specific gravity theory.
  • * After examining data from advanced LIGO, we found no signs of these gravitational waves, but established upper limits for scalar and vector strains that are similar to existing limits for tensor strain.
View Article and Find Full Text PDF

On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.

View Article and Find Full Text PDF

On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.

View Article and Find Full Text PDF