Gut dysbiosis and an inflamed bowel are growing concerns in mammals, including dogs. Probiotic supplements have been used to restore the natural microbial community and improve gastrointestinal health. Biofilm formation, antimicrobial activities, and immunological responses of probiotics are crucial to improving gut health.
View Article and Find Full Text PDFThe development of a rapid, sensitive, specific method for detecting foodborne pathogens is paramount for supplying safe food to enhance public health safety. Despite the significant improvement in pathogen detection methods, key issues are still associated with rapid methods, such as distinguishing living cells from dead, the pathogenic potential or health risk of the analyte at the time of consumption, the detection limit, and the sample-to-result. Mammalian cell-based assays analyze pathogens' interaction with host cells and are responsive only to live pathogens or active toxins.
View Article and Find Full Text PDFMoonlighting proteins (MPs), characterized by their ability to perform multiple physiologically unrelated functions without alterations to their primary structures, represent a fascinating class of biomolecules with significant implications for host-pathogen interactions. This Review highlights the emerging importance of metabolic moonlighting proteins (MetMPs) in bacterial pathogenesis, focusing on their non-canonical secretion and unconventional surface anchoring mechanisms. Despite lacking typical signal peptides and anchoring motifs, MetMPs such as acetaldehyde alcohol dehydrogenase (AdhE) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are secreted and localized to the bacterial surface under stress conditions, facilitating host colonization and immune evasion.
View Article and Find Full Text PDFNatural and sustainable plant-based antioxidants and antimicrobials are highly desirable for improving food quality and safety. The present investigation assessed the antimicrobial and antioxidant properties of active components from L. (herb) roots, also known as Ratanjot root.
View Article and Find Full Text PDFUnlabelled: The cellular junctional architecture remodeling by adhesion protein-heat shock protein 60 (LAP-Hsp60) interaction for () passage through the epithelial barrier is incompletely understood. Here, using the gerbil model, permissive to internalin (Inl) A/B-mediated pathways like in humans, we demonstrate that crosses the intestinal villi at 48 h post-infection. In contrast, the single isogenic ( or Δ) or double (Δ) mutant strains show significant defects.
View Article and Find Full Text PDFNumerous interacting protein partners exist without recognized interactive domains, necessitating a standardized methodology to decipher more in-depth interaction profiles. Here, we present a protocol to reveal the binding partner of a secreted housekeeping enzyme, alcohol acetaldehyde dehydrogenase (Listeria adhesion protein), in Listeria monocytogenes through in silico modeling and in vivo experiments. We describe steps for target protein modeling, biophysical profiling, ClusPro docking optimization, protein variant modeling, and docking comparison.
View Article and Find Full Text PDFis one of the most common zoonotic foodborne pathogens and a worldwide public health threat. is the most pathogenic among species, comprising over 2500 serovars. It causes typhoid fever and gastroenteritis, and the serovars responsible for the later disease are known as non-typhoidal (NTS).
View Article and Find Full Text PDFListeria adhesion protein (LAP) is a secreted acetaldehyde alcohol dehydrogenase (AdhE) that anchors to an unknown molecule on the Listeria monocytogenes (Lm) surface, which is critical for its intestinal epithelium crossing. In the present work, immunoprecipitation and mass spectrometry identify internalin B (InlB) as the primary ligand of LAP (K ∼ 42 nM). InlB-deleted and naturally InlB-deficient Lm strains show reduced LAP-InlB interaction and LAP-mediated pathology in the murine intestine and brain invasion.
View Article and Find Full Text PDFPea protein is a popular plant-based protein for mimicking textures in meat and dairy analogues which are more sustainable than their animal-based counterparts. However, precise mechanisms for generating specific textures through different processing methods are still being evaluated. This work utilizes a novel low-temperature extrusion process to selectively alter the chemical structure of pea protein.
View Article and Find Full Text PDFZearalenone (ZEN) is an estrogenic mycotoxin produced by the Fusarium species and induces severe reproductive disorders in animals thus a major concern in the livestock industry. Probiotic bacteria treatments have been shown to inactivate mycotoxins, therefore, in this study, we investigated the effect of two commercial probiotic feed additives on the sequestration of ZEN. Commercial probiotic blends containing clay-based binder with Aspergillus niger, Bacillus licheniformis, Bacillus pumilus, and Bacillus subtilis at various proportions from BioMatrix International were incubated with ZEN in a time-dependent manner and then analyzed by Enzyme-Linked Immunosorbent Assay (ELISA) to quantify unbound ZEN.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2023
Annu Rev Food Sci Technol
March 2023
Structural bioinformatics analyzes protein structural models with the goal of uncovering molecular drivers of food functionality. This field aims to develop tools that can rapidly extract relevant information from protein databases as well as organize this information for researchers interested in studying protein functionality. Food bioinformaticians take advantage of millions of protein amino acid sequences and structures contained within these databases, extracting features such as surface hydrophobicity that are then used to model functionality, including solubility, thermostability, and emulsification.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2023
Classical microbiology has paved the path forward for the development of modern biotechnology and microbial biosensing platforms. Microbial culturing and isolation using the Petri plate revolutionized the field of microbiology. In 1887, Julius Richard Petri invented possibly the most important tool in microbiology, the Petri plate, which continues to have a profound impact not only on reliably isolating, identifying, and studying microorganisms but also manipulating a microbe to study gene expression, virulence properties, antibiotic resistance, and production of drugs, enzymes, and foods.
View Article and Find Full Text PDFThe USDA-FSIS has zero tolerance for O157:H7 in raw ground beef. Currently, FSIS collects samples from beef processing facilities and ships them overnight to regional testing laboratories. Pathogen detection requires robust methods that employ an initial 15-24 h culture enrichment.
View Article and Find Full Text PDFFoodborne microorganisms are an important cause of human illness worldwide. Two-thirds of human foodborne diseases are caused by bacterial pathogens throughout the globe, especially in developing nations. Despite enormous developments in conventional foodborne pathogen detection methods, progress is limited by the assay complexity and a prolonged time-to-result.
View Article and Find Full Text PDFContamination of meat with pathogenic microorganisms can cause severe illnesses and food waste, which has significant negative impacts on both general health and the economy. In many cases, the expiration date is not a good indicator of meat freshness as there is a high risk of contamination during handling throughout the supply chain. Many biomarkers, including color, odor, pH, temperature, and volatile compounds, are used to determine spoilage.
View Article and Find Full Text PDFA mixed culture (polymicrobial) biofilm provides a favorable environment for pathogens to persist in the food processing environment and to contaminate food products. Inactivation and eradication of such biofilms from food processing environments are achieved by using harsh disinfectants, but their toxicity and environmentally hostile characteristics are unsustainable. This study aims to use food-grade natural nanoparticulated antimicrobials to control mixed-culture biofilms.
View Article and Find Full Text PDFFoodborne illness associated with the consumption of contaminated sprouts has been a significant food safety risk. While seed disinfection with chemical sanitizers has been used as an intervention approach, its efficacy to reduce bacterial load has not been always satisfactory. In this study, a newly developed alginate-based, antimicrobial seed coating treatment was evaluated for its efficacy to reduce foodborne pathogens from alfalfa seeds and sprouts.
View Article and Find Full Text PDFBiofilm formation is an integral part of the microbial life cycle in nature. In food processing environments, bacterial transmissions occur primarily through raw or undercooked foods and by cross-contamination during unsanitary food preparation practices. Foodborne pathogens form biofilms as a survival strategy in various unfavorable environments, which also become a frequent source of recurrent contamination and outbreaks of foodborne illness.
View Article and Find Full Text PDFListeria monocytogenes is an invasive opportunistic foodborne pathogen and its routine surveillance is critical for protecting the food supply and public health. The traditional detection methods are time-consuming and require trained personnel. Lateral flow immunoassay (LFIA), on the other hand, is an easy-to-perform, rapid point-of-care test and has been widely used as an inexpensive surveillance tool.
View Article and Find Full Text PDFProtein structure can be altered with heat, but models which predict denaturation show that globular proteins also spontaneously unfold at low temperatures through cold denaturation. By an analysis of the primary structure of pea protein using bioinformatic modeling, a mechanism of pea protein cold denaturation is proposed. Pea protein is then fractionated into partially purified legumin and vicilin components, suspended in ethanol, and subjected to low temperatures (-10 to -20 °C).
View Article and Find Full Text PDFis one of the most invasive foodborne pathogens and is responsible for numerous outbreaks worldwide. Most of the methods to detect this bacterium in food require selective enrichment using traditional bacterial culture techniques that can be time-consuming and labour-intensive. Moreover, molecular methods are expensive and need specific technical knowledge.
View Article and Find Full Text PDFAbstract: Foodborne disease outbreaks continue to be a major public health and food safety concern. Testing products promptly can protect consumers from foodborne diseases by ensuring the safety of food before retail distribution. Fast, sensitive, and accurate detection tools are in great demand.
View Article and Find Full Text PDFMicrocystin-LR (MC-LR), a polypeptide toxin generated by cyanobacteria, threatens the safety of drinking water supplies. In this study, fulvic acid (FA) was separated into two molecular weight (MW) ranges to evaluate the effects of FA size on MC-LR degradation in the chlorine/UV process. The rates of MC-LR degradation were significantly reduced in FA-containing water (3.
View Article and Find Full Text PDFEnvironmental cues promote microbial biofilm formation and physiological and genetic heterogeneity. In food production facilities, biofilms produced by pathogens are a major source for food contamination; however, the pathogenesis of biofilm-isolated sessile cells is not well understood. We investigated the pathogenesis of sessile Listeria monocytogenes (Lm) using cell culture and mouse models.
View Article and Find Full Text PDF