Publications by authors named "Arun Anand"

This study investigates the potential of zinc oxide (ZnO) and Ag-doped zinc oxide (Ag-ZnO) nanoparticles (NPs) (1, 3 and 5 wt%) electrospun into poly(vinylidene fluoride) (PVDF) based triboelectric nanogenerators (TENGs) to harness electrical energy from ambient mechanical vibrations. ZnO and Ag-ZnO NPs were developed using a co-precipitation method. 3 wt% Ag-ZnO doping was optimized to exhibit a higher β-crystalline phase in PVDF (PAZ3).

View Article and Find Full Text PDF

Thickness measurements of objects, especially transparent and semi-transparent objects, are essential for their characterization and identification. However, in the case of occluded objects, the optical thickness determination becomes difficult, and an indirect way must be devised. Thermal loading of the objects changes their opto-thermal properties, which will be reflected as a change in their optical thickness.

View Article and Find Full Text PDF

The aim of this study was to investigate the relationship of different radiographic parameters of mandibular first molar with respect to age, body weight and breed in healthy dogs. Overall, 50 dogs with the age from 5 to 156 months and body weight from 6.00 to 45.

View Article and Find Full Text PDF

Aortic remodeling is the consequence of untreated systemic hypertension along with aortic dilatation as a marker for target organ damage in human literature. Therefore, the present study was planned to detect the changes in aorta at the level of aortic root via echocardiography, thoracic descending aorta via radiography and abdominal aorta via ultrasonography in healthy (n = 46), diseased normotensive (n = 20) and systemically hypertensive dogs (n = 60). The aortic root dimensions were measured at the level of aortic annulus, sinus of valsalva, sino-tubular junction and proximal ascending aorta via left ventricular outflow tract view of echocardiography.

View Article and Find Full Text PDF

In this manuscript, we describe the development of a single shot, self-referencing wavefront division, multiplexing digital holographic microscope employing LED sources for large field of view quantitative phase imaging of biological samples. To address the difficulties arising while performing interferometry with low temporally coherent sources, an optical arrangement utilizing multiple Fresnel Biprisms is used for hologram multiplexing, enhancing the field of view and increasing the signal to noise ratio. Biprisms offers the ease of obtaining interference patterns by automatically matching the path length between the two off-axis beams.

View Article and Find Full Text PDF

This Roadmap article on digital holography provides an overview of a vast array of research activities in the field of digital holography. The paper consists of a series of 25 sections from the prominent experts in digital holography presenting various aspects of the field on sensing, 3D imaging and displays, virtual and augmented reality, microscopy, cell identification, tomography, label-free live cell imaging, and other applications. Each section represents the vision of its author to describe the significant progress, potential impact, important developments, and challenging issues in the field of digital holography.

View Article and Find Full Text PDF

A 5 years-old Rhesus macaque was presented with abdominal enlargement. The clinical, radiographic and ultrasonographic findings suggested that a massive mass occupying the whole of the abdomen. The mass was surgically removed, and histopathology confirmed ovarian teratoma.

View Article and Find Full Text PDF

Digital holographic microscopy (DHM) is a future three-dimensional (3D) microscopy due to its high-resolution and high-precision 3D images. Thus, it is getting attention in bioinformatics, semiconductor defect detection, etc. However, some limitations still exist.

View Article and Find Full Text PDF

We demonstrate a successful deep learning strategy for cell identification and disease diagnosis using spatio-temporal cell information recorded by a digital holographic microscopy system. Shearing digital holographic microscopy is employed using a low-cost, compact, field-portable and 3D-printed microscopy system to record video-rate data of live biological cells with nanometer sensitivity in terms of axial membrane fluctuations, then features are extracted from the reconstructed phase profiles of segmented cells at each time instance for classification. The time-varying data of each extracted feature is input into a recurrent bi-directional long short-term memory (Bi-LSTM) network which learns to classify cells based on their time-varying behavior.

View Article and Find Full Text PDF

Aim: The present study was undertaken to study the clinical and hemato-biochemical alterations, ultrasonography, and surgical treatment of bovine suffering from cecal dilatation and cecal impaction.

Materials And Methods: The present study was conducted on 11 bovines (9 buffaloes and 2 cattle) suffering from cecal dilatation (n=6) and cecal impaction (n=5). The diagnosis of surgical affections of cecum was made on the basis of clinical examination, hematobiochemistry, ultrasonography, and exploratory laparotomy.

View Article and Find Full Text PDF

Digital holographic microscopy is the state of the art quantitative phase imaging of micro-objects including living cells. It is an ideal tool to image and quantify cell thickness profiles with nanometer thickness resolution. Digital holographic techniques usually are implemented using a two-beam setup that may be bulky and may not be field portable.

View Article and Find Full Text PDF

We present a spatio-temporal analysis of cell membrane fluctuations to distinguish healthy patients from patients with sickle cell disease. A video hologram containing either healthy red blood cells (h-RBCs) or sickle cell disease red blood cells (SCD-RBCs) was recorded using a low-cost, compact, 3D printed shearing interferometer. Reconstructions were created for each hologram frame (time steps), forming a spatio-temporal data cube.

View Article and Find Full Text PDF

Alcohol addiction is a chronic relapsing syndrome. Benzodiazepines remain as the mainstay for detoxification, taking care of the acute withdrawal syndrome. There is fear of dependence and abuse of benzodiazepines on prolonged use.

View Article and Find Full Text PDF

Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability.

View Article and Find Full Text PDF

Context: Medically unexplained symptoms (MUS) are often poorly responsive to standard treatments.

Aim: The aim of the study is to assess short-term efficacy of adjunctive single session cognitive behavior therapy (CBT)-based counseling for patients with MUS.

Setting And Design: Randomized controlled trial at a psychosomatic clinic of a tertiary care hospital.

View Article and Find Full Text PDF

Background: People with medically unexplained symptoms (MUS) may have psychological co-morbidities.

Aims: Our objectives were to assess the rates and identify correlates of psychological distress in MUS.

Methods: A total of 171 subjects with MUS seeking treatment at a tertiary care facility were assessed over a 3-year period.

View Article and Find Full Text PDF

In this paper, we use a glass microsphere incorporated into a digital holographic microscope to increase the effective resolution of the system, aiming at precise cell identification. A Mirau interferometric objective is employed in the experiments, which can be used for a common-path digital holographic microscopy (DHMicroscopy) arrangement. High-magnification Mirau objectives are expensive and suffer from low working distances, yet the commonly used low-magnification Mirau objectives do not have high lateral resolutions.

View Article and Find Full Text PDF

We propose a low-cost, compact, and field-portable 3D printed holographic microscope for automated cell identification based on a common path shearing interferometer setup. Once a hologram is captured from the portable setup, a 3D reconstructed height profile of the cell is created. We extract several morphological cell features from the reconstructed 3D height profiles, including mean physical cell thickness, coefficient of variation, optical volume (OV) of the cell, projected area of the cell (PA), ratio of PA to OV, cell thickness kurtosis, cell thickness skewness, and the dry mass of the cell for identification using the random forest (RF) classifier.

View Article and Find Full Text PDF

We experimentally verify a speckle-based technique for noncontact measurement of glucose concentration in the bloodstream. The final device is intended to be a single wristwatch-style device containing a laser, a camera, and an alternating current (ac) electromagnet generated by a solenoid. The experiments presented are performed in vitro as proof of the concept.

View Article and Find Full Text PDF

Interferometric microscopy has grown into a very potent tool for quantitative phase imaging of biological samples. Among the interfermetric methods, microscopy by digital holography is one of the most effective techniques, especially for studying dynamics of cells. Imaging of cell fluctuations requires digital holographic setups with high temporal stability.

View Article and Find Full Text PDF

We present an integrated optical system for three-dimensional (3D) imaging of micrometer-sized samples, while immobilizing and manipulating the samples by means of an optical fiber trap. Optical traps allow us to apply and measure pico-Newton-sized forces, and perform detailed measurements of micrometer-sized dielectric systems in the field of biology. The integrated 3D system can be used as a major tool in the field of biophysics.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionj21osrn5ittknksqfs5c7dltbamo622p): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once