Publications by authors named "Arun Alphonse Ignatius"

Purpose: The viscosity of highly concentrated therapeutic monoclonal antibody (mAb) formulations at concentrations ≥ 100 mg/mL can significantly affect the stability, processing, and drug product development for subcutaneous delivery. An early identification of a viscosity prone mAb during candidate selection stages are often beneficial for downstream processes. Higher order structure of mAbs may often dictate their viscosity behavior at high concentration.

View Article and Find Full Text PDF

The adsorption of antigens to the surface of 2 commonly used insoluble adjuvants, aluminum phosphate and aluminum hydroxide, has been well characterized. In spite of the pharmaceutical benefits, alum-based vaccine formulations can present challenges in redispersion of the final product after storage. Inability to resuspend alum-based vaccines during administration results in inadequate dosing, thus rendering the product unusable.

View Article and Find Full Text PDF

Purpose: An understanding of higher order structure (HOS) of monoclonal antibodies (mAbs) could be critical to predicting its function. Amongst the various factors that can potentially affect HOS of mAbs, chemical modifications that are routinely encountered during production and long-term storage are of significant interest.

Methods: To this end, two Pfizer mAbs were subjected to forced deamidation stress for a period of eight weeks.

View Article and Find Full Text PDF

Bispecific antibodies represent a promising avenue whereby 2 different binding specificities of a single-chain antibody can be grafted into a common Fc fragment to generate one antibody-like molecule. Despite the promising efficacy of such modalities, they may lack manufacturability because of stability and aggregation issues. Herein, we performed a systematic buffer screening for an aggregation-prone therapeutic bispecific antibody (BsAb) during early stage development.

View Article and Find Full Text PDF

Purpose: Fc domains are an integral component of monoclonal antibodies (mAbs) and Fc-based fusion proteins. Engineering mutations in the Fc domain is a common approach to achieve desired effector function and clinical efficacy of therapeutic mAbs. It remains debatable, however, whether molecular engineering either by changing glycosylation patterns or by amino acid mutation in Fc domain could impact the higher order structure of Fc domain potentially leading to increased aggregation propensities in mAbs.

View Article and Find Full Text PDF

Evaluation of the physical characteristics of vaccines formulated in the presence of adjuvants, such as aluminum salts (Alum), is an important step in the development of vaccines. Depending on the formulation conditions and the associated electrostatic interactions of the adjuvant particles, the vaccine suspension may transition between flocculated and deflocculated states. The impact of practical formulation parameters, including pH, ionic strength, and the presence of model antigens, has been correlated to the sedimentation behavior of aluminum phosphate suspensions.

View Article and Find Full Text PDF

Production of recombinant proteins generates a variety of process-related impurities. The multistep manufacturing processes may introduce many potential contaminants into the final pharmaceutical products. These residual impurities and contaminants can potentially impact the protein stability significantly.

View Article and Find Full Text PDF

The kinetics of agitation-induced subvisible particle formation was investigated for a few model proteins - human serum albumin (HSA), hen egg white lysozyme (HEWL), and a monoclonal antibody (IgG2). Experiments were carried out for the first time under relatively low protein concentration and low agitation speed to investigate the details of subvisible particle formation at the initial phase of aggregation (<2%) process. Upon agitation, both soluble higher molecular mass species (HMMS) and subvisible particles (SbVPs) formed at different rates, and via different mechanisms.

View Article and Find Full Text PDF