Double-stranded segments of a genome that can potentially form G-quadruplex (GQ) and/or i-motif (iM) structures are considered to be important regulatory elements. Hence, the development of a common probe that can detect GQ and iM structures and also distinguish them from a duplex structure will be highly useful in understanding the propensity of such segments to adopt duplex or non-canonical four-stranded structures. Here, we describe the utility of a conformation-sensitive fluorescent nucleoside analog, which was originally developed as a GQ sensor, in detecting the iM structures of C-rich DNA oligonucleotides (ONs).
View Article and Find Full Text PDFPd-catalyzed C-C bond formation, an important vertebra in the spine of synthetic chemistry, is emerging as a valuable chemoselective transformation for post-synthetic functionalization of biomacromolecules. While methods are available for labeling protein and DNA, development of an analogous procedure to label RNA by cross-coupling reactions remains a major challenge. Herein, we describe a new Pd-mediated RNA oligonucleotide (ON) labeling method that involves post-transcriptional functionalization of iodouridine-labeled RNA transcripts by using Suzuki-Miyaura cross-coupling reaction.
View Article and Find Full Text PDFThe synthesis of 2'-O-methyl-5-hydroxymethylcytidine (hm Cm), 5-hydroxymethylcytidine (hm C) and 5-formylcytidine (f C) phosphoramidite monomers has been developed. Optimisation of mild post-synthetic deprotection conditions enabled the synthesis of RNA containing all four naturally occurring cytosine modifications (hm Cm, hm C, f C plus 5-methylcytosine). Given the considerable interest in RNA modifications and epitranscriptomics, the availability of synthetic monomers and RNAs containing these modifications will be valuable for elucidating their biological function(s).
View Article and Find Full Text PDFCellular RNA labeling strategies based on bioorthogonal chemical reactions are much less developed in comparison to glycan, protein and DNA due to its inherent instability and lack of effective methods to introduce bioorthogonal reactive functionalities (e.g. azide) into RNA.
View Article and Find Full Text PDFDevelopment of probes that can discriminate G-quadruplex (GQ) structures and indentify efficient GQ binders on the basis of topology and nucleic acid type is highly desired to advance GQ-directed therapeutic strategies. In this context, we describe the development of minimally perturbing and environment-sensitive pyrimidine nucleoside analogues, based on a 5-(benzofuran-2-yl)uracil core, as topology-specific fluorescence turn-on probes for human telomeric DNA and RNA GQs. The pyrimidine residues of one of the loop regions (TTA) of telomeric DNA and RNA GQ oligonucleotide (ON) sequences were replaced with 5-benzofuran-modified 2'-deoxyuridine and uridine analogues.
View Article and Find Full Text PDFThe majority of fluorescent nucleoside analogues used in nucleic acid studies have excitation maxima in the UV region and show very low fluorescence within oligonucleotides (ONs); hence, they cannot be utilised with certain fluorescence methods and for cell-based analysis. Here, we describe the synthesis, photophysical properties and incorporation of a highly emissive and environment-sensitive uridine analogue, derived by attaching a Lucifer chromophore (1,8-naphthalimide core) at the 5-position of uracil. The emissive nucleoside displays excitation and emission maxima in the visible region and exhibits high quantum yield.
View Article and Find Full Text PDFThe synthesis and site-specific incorporation of an environment-sensitive fluorescent nucleoside analogue (2), based on a 5-(benzofuran-2-yl)pyrimidine core, into DNA oligonucleotides (ONs), and its photophysical properties within these ONs are described. Interestingly and unlike 2-aminopurine (a widely used nucleoside analogue probe), when incorporated into an ON and hybridised with a complementary ON, the emissive nucleoside 2 displays significantly higher emission intensity than the free nucleoside. Furthermore, photophysical characterisation shows that the fluorescence properties of the nucleoside analogue within ONs are significantly influenced by flanking bases, especially by guanosine.
View Article and Find Full Text PDFThis protocol describes the detailed experimental procedure for the synthesis of an azide-modified uridine triphosphate analog and its effective incorporation into an oligoribonucleotide by in vitro transcription reactions. Furthermore, procedures for labeling azide-modified oligoribonucleotides post-transcriptionally with biophysical probes by copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) and Staudinger reactions are also provided. This post-transcriptional chemical modification protocol is simple and modular, and it affords labeled oligonucleotides in reasonable amounts for biophysical assays.
View Article and Find Full Text PDFDevelopment of a simple label-free fluorescence hybridization assay to monitor the depurination activity of toxic ribosome inactivating proteins by using a fluorescent ligand that specifically pseudo base pairs with a cytosine residue opposite an abasic site is described. This method could be potentially implemented in screening platforms for the discovery of small molecules that inhibit the activity of these toxins.
View Article and Find Full Text PDFDirect incorporation of azide groups into RNA oligonucleotides by in vitro transcription reactions in the presence of a new azide-modified UTP analogue, and subsequent posttranscriptional chemical labeling of azide-modified oligoribonucleotide transcripts by click and Staudinger reactions are described. This postsynthetic labeling protocol is robust and modular, and offers an alternative access to RNA labeled with biophysical probes.
View Article and Find Full Text PDFBase-modified fluorescent ribonucleoside-analogue probes are valuable tools in monitoring RNA structure and function because they closely resemble the structure of natural nucleobases. Especially, 2-aminopurine, a highly environment-sensitive adenosine analogue, is the most extensively utilized fluorescent nucleoside analogue. However, only a few isosteric pyrimidine ribonucleoside analogues that are suitable for probing the structure and recognition properties of RNA molecules are available.
View Article and Find Full Text PDF