Homeotic or Hox genes determine the anterior-posterior body axis in all bilaterians. As expected, Hox genes are highly conserved across bilaterians. Interestingly, however, the peculiar organization of Hox genes in the form of clusters where the order of occurrence of genes in the genome corresponds to the order in which they regulate segmental identity of anterior-posterior body axis is also conserved.
View Article and Find Full Text PDF(Hymenoptera: Figitidae) is a specialist parasitoid of The system has emerged as a suitable model for understanding several aspects of host-parasitoid biology. However, a good quality genome of the wasp counterpart was lacking. Here, we report a whole-genome assembly of to bring it in the scope of the applied and fundamental research on parasitoids with access to epigenomics and genome editing tools.
View Article and Find Full Text PDFThe epigenetic memory is an essential aspect of multicellular organisms to maintain several cell types and their gene expression pattern. This complex process uses a number of protein factors and specific DNA elements within the developmental cues to achieve this. The protein factors involved in the process are the Polycomb group (PcG) members, and, accordingly, the DNA sequences that interact with these proteins are called Polycomb Response Elements (PREs).
View Article and Find Full Text PDFBackground: Eukaryotic genome acquires functionality upon proper packaging within the nucleus. This process is facilitated by the structural framework of Nuclear Matrix, a nucleo-proteinaceous meshwork. Matrix Attachment Regions (MARs) in the genome serve as anchoring sites to this framework.
View Article and Find Full Text PDFThe conservation of hox genes as well as their genomic organization across the phyla suggests that this system of anterior-posterior axis formation arose early during evolution and has come under strong selection pressure. Studies in the split Hox cluster of Drosophila have shown that proper expression of hox genes is dependent on chromatin domain boundaries that prevent inappropriate interactions among different types of cis-regulatory elements. To investigate whether boundary function and their role in regulation of hox genes is conserved in insects with intact Hox clusters, we used an algorithm to locate potential boundary elements in the Hox complex of mosquito, Anopheles gambiae.
View Article and Find Full Text PDFChromatin domain boundary elements prevent inappropriate interaction between distant or closely spaced regulatory elements and restrict enhancers and silencers to correct target promoters. In spite of having such a general role and expected frequent occurrence genome wide, there is no DNA sequence analysis based tool to identify boundary elements. Here, we report chromatin domain Boundary Element Search Tool (cdBEST), to identify boundary elements.
View Article and Find Full Text PDFThe GAGA factor (GAF), encoded by the Trithorax like gene (Trl) is a multifunctional protein involved in gene activation, Polycomb-dependent repression, chromatin remodeling and is a component of chromatin domain boundaries. Although first isolated as transcriptional activator of the Drosophila homeotic gene Ultrabithorax (Ubx), the molecular basis of this GAF activity is unknown. Here we show that dmTAF3 (also known as BIP2 and dTAF(II)155), a component of TFIID, interacts directly with GAF.
View Article and Find Full Text PDFEpigenetic inheritance to maintain the expression state of the genome is essential during development. In Drosophila, the cis regulatory elements, called the Polycomb Response Elements (PREs) function to mark the epigenetic cellular memory of the corresponding genomic region with the help of PcG and trxG proteins. While the PcG genes code for the repressor proteins, the trxG genes encode activator proteins.
View Article and Find Full Text PDF