Publications by authors named "Artyom Kopp"

Pheromones play a key role in regulating sexual behavior throughout the animal kingdom. In and other insects, many cuticular hydrocarbons (CHCs) are sexually dimorphic, and some are known to perform pheromonal functions. However, the genetic control of sex-specific CHC production is not understood outside of the model species .

View Article and Find Full Text PDF

Some male swordtail fish mimic female 'pregnancy spots' to reduce aggression from rival males and gain a fitness advantage. This sexual mimicry is linked to evolutionary changes in the regulatory region of the kit-liganda gene that controls melanocyte development.

View Article and Find Full Text PDF

Long-read sequencing is driving rapid progress in genome assembly across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab.

View Article and Find Full Text PDF

Drosophila prolongata is a member of the melanogaster species group and rhopaloa subgroup native to the subtropical highlands of Southeast Asia. This species exhibits an array of recently evolved male-specific morphological, physiological, and behavioral traits that distinguish it from its closest relatives, making it an attractive model for studying the evolution of sexual dimorphism and testing theories of sexual selection. The lack of genomic resources has impeded the dissection of the molecular basis of sex-specific development and behavior in this species.

View Article and Find Full Text PDF

is a member of the species group and subgroup native to the subtropical highlands of southeast Asia. This species exhibits an array of recently evolved male-specific morphological, physiological, and behavioral traits that distinguish it from its closest relatives, making it an attractive model for studying the evolution of sexual dimorphism and testing theories of sexual selection. The lack of genomic resources has impeded the dissection of the molecular basis of sex-specific development and behavior in this species.

View Article and Find Full Text PDF

Across internally fertilising species, males transfer ejaculate proteins that trigger wide-ranging changes in female behaviour and physiology. Much theory has been developed to explore the drivers of ejaculate protein evolution. The accelerating availability of high-quality genomes now allows us to test how these proteins are evolving at fine taxonomic scales.

View Article and Find Full Text PDF

Long-read sequencing is driving rapid progress in genome assembly across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab.

View Article and Find Full Text PDF

Across internally fertilising species, males transfer ejaculate proteins that trigger wide-ranging changes in female behaviour and physiology. Much theory has been developed to explore the drivers of ejaculate protein evolution. The accelerating availability of high-quality genomes now allows us to test how these proteins are evolving at fine taxonomic scales.

View Article and Find Full Text PDF

To respond to the world around them, animals rely on the input of a network of sensory organs distributed throughout the body. Distinct classes of sensory organs are specialized for the detection of specific stimuli such as strain, pressure, or taste. The features that underlie this specialization relate both to the neurons that innervate sensory organs and the accessory cells they comprise.

View Article and Find Full Text PDF

The origin, diversification, and secondary loss of sexually dimorphic characters are common in animal evolution. In some cases, structurally and functionally similar traits have evolved independently in multiple lineages. Prominent examples of such traits include the male-specific grasping structures that develop on the front legs of many dipteran insects.

View Article and Find Full Text PDF

Animal evolution is characterized by frequent turnover of sexually dimorphic traits-new sex-specific characters are gained, and some ancestral sex-specific characters are lost, in many lineages. In insects, sexual differentiation is predominantly cell autonomous and depends on the expression of the doublesex (dsx) transcription factor. In most cases, cells that transcribe dsx have the potential to undergo sex-specific differentiation, while those that lack dsx expression do not.

View Article and Find Full Text PDF

Drosophila males use leg gustatory bristles to discriminate between male and female cuticular pheromones as an important part of courtship behavior. In Drosophila melanogaster, several male-specific gustatory bristles are present on the anterior surface of the first tarsal segment of the prothoracic leg, in addition to a larger set of gustatory bristles found in both sexes. These bristles are thought to be specialized for pheromone detection.

View Article and Find Full Text PDF

The evolution of gene expression via cis-regulatory changes is well established as a major driver of phenotypic evolution. However, relatively little is known about the influence of enhancer architecture and intergenic interactions on regulatory evolution. We address this question by examining chemosensory system evolution in Drosophila.

View Article and Find Full Text PDF

The vinegar fly Drosophila melanogaster is a pivotal model for invertebrate development, genetics, physiology, neuroscience, and disease. The whole family Drosophilidae, which contains over 4,400 species, offers a plethora of cases for comparative and evolutionary studies. Despite a long history of phylogenetic inference, many relationships remain unresolved among the genera, subgenera, and species groups in the Drosophilidae.

View Article and Find Full Text PDF

Over 100 years of studies in and related species in the genus have facilitated key discoveries in genetics, genomics, and evolution. While high-quality genome assemblies exist for several species in this group, they only encompass a small fraction of the genus. Recent advances in long-read sequencing allow high-quality genome assemblies for tens or even hundreds of species to be efficiently generated.

View Article and Find Full Text PDF

Most animal species consist of two distinct sexes. At the morphological, physiological, and behavioral levels the differences between males and females are numerous and dramatic, yet at the genomic level they are often slight or absent. This disconnect is overcome because simple genetic differences or environmental signals are able to direct the sex-specific expression of a shared genome.

View Article and Find Full Text PDF

The Drosophila montium species group is a clade of 94 named species, closely related to the model species D. melanogaster. The montium species group is distributed over a broad geographic range throughout Asia, Africa, and Australasia.

View Article and Find Full Text PDF

Transcriptomes are key to understanding the relationship between genotype and phenotype. The ability to infer the expression state (active or inactive) of genes in the transcriptome offers unique benefits for addressing this issue. For example, qualitative changes in gene expression may underly the origin of novel phenotypes, and expression states are readily comparable between tissues and species.

View Article and Find Full Text PDF

Binary communication systems that involve sex-specific signaling and sex-specific signal perception play a key role in sexual selection and in the evolution of sexually dimorphic traits. The driving forces and genetic changes underlying such traits can be investigated in systems where sex-specific signaling and perception have emerged recently and show evidence of potential coevolution. A promising model is found in , which exhibits a species-specific increase in the number of male chemosensory bristles.

View Article and Find Full Text PDF

Evolution of relative organ size is the most prolific source of morphological diversity, yet the underlying molecular mechanisms that modify growth control are largely unknown. Models where organ proportions have undergone recent evolutionary changes hold the greatest promise for understanding this process. Uniquely among Drosophila species, Drosophila prolongata displays a dramatic, male-specific increase in the size of its forelegs relative to other legs.

View Article and Find Full Text PDF

Insects are the only known animals in which sexual differentiation is controlled by sex-specific splicing. The transcription factor produces distinct male and female isoforms, which are both essential for sex-specific development. splicing depends on , which is also alternatively spliced such that functional Tra is only present in females.

View Article and Find Full Text PDF

The ability of a single genome to produce distinct and often dramatically different male and female forms is one of the wonders of animal development. In , most sexually dimorphic traits are controlled by sex-specific isoforms of the () transcription factor, and expression is mostly limited to cells that give rise to sexually dimorphic traits. However, it is unknown how this mosaic of sexually dimorphic and monomorphic organs arises.

View Article and Find Full Text PDF

We describe a new species in the Drosophila melanogaster species group, Drosophila carrolli n. sp., showing morphological affinities with D.

View Article and Find Full Text PDF

Hox genes are involved in the patterning of animal body parts at multiple levels of regulatory hierarchies. Early expression of Hox genes in different domains along the embryonic anterior-posterior (A/P) axis in insects, vertebrates, and other animals establishes segmental or regional identity. However, Hox gene function is also required later in development for the patterning and morphogenesis of limbs and other organs.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: