Publications by authors named "Arturo d'Angelo"

Cells generate mechanical forces to shape tissues during morphogenesis. These forces can activate several biochemical pathways and trigger diverse cellular responses by mechano-sensation, such as differentiation, division, migration and apoptosis. Assessing the mechano-responses of cells in living organisms requires tools to apply controlled local forces within biological tissues.

View Article and Find Full Text PDF

During development, cell-generated forces induce tissue-scale deformations to shape the organism [1,2]. The pattern and extent of these deformations depend not solely on the temporal and spatial profile of the generated force fields but also on the mechanical properties of the tissues that the forces act on. It is thus conceivable that, much like the cell-generated forces, the mechanical properties of tissues are modulated during development in order to drive morphogenesis toward specific developmental endpoints.

View Article and Find Full Text PDF

How the homeostasis of tissue mechanics is controlled remains an open question. In a recent issue of Nature Cell Biology, Moro et al. (2019) reveal a novel role for miRNAs in regulating mechanotransduction in cells, tissues, and wound healing.

View Article and Find Full Text PDF

During epithelial contraction, cells generate forces to constrict their surface and, concurrently, fine-tune the length of their adherens junctions to ensure force transmission. While many studies have focused on understanding force generation, little is known on how junctional length is controlled. Here, we show that, during amnioserosa contraction in Drosophila dorsal closure, adherens junctions reduce their length in coordination with the shrinkage of apical cell area, maintaining a nearly constant junctional straightness.

View Article and Find Full Text PDF

Epithelial spreading is a fundamental mode of tissue rearrangement occurring during animal development and wound closure. It has been associated either with the collective migration of cells [1, 2] or with actomyosin-generated forces acting at the leading edge (LE) and pulling the epithelial tissue [3, 4]. During the process of Drosophila head involution (HI), the epidermis spreads anteriorly to envelope the head tissues and fully cover the embryo [5].

View Article and Find Full Text PDF

Biological tissues must generate forces to shape organs and achieve proper development. Such forces often result from the contraction of an apical acto-myosin meshwork. Here we describe an alternative mechanism for tissue contraction, based on individual cell volume change.

View Article and Find Full Text PDF

An appropriate organisation of muscles is crucial for their function, yet it is not known how functionally related muscles are coordinated with each other during development. In this study, we show that the development of a subset of functionally related head muscles in the zebrafish is regulated by Ret tyrosine kinase signalling. Three genes in the Ret pathway (gfra3, artemin2 and ret) are required specifically for the development of muscles attaching to the opercular bone (gill cover), but not other adjacent muscles.

View Article and Find Full Text PDF