Publications by authors named "Arturo Vera Ponce De Leon"

Unlabelled: Freshwater ecosystems can be largely affected by neighboring agriculture fields where potential fertilizer nitrate run-off may leach into surrounding water bodies. To counteract this eutrophic driver, farmers in certain areas are utilizing denitrifying woodchip bioreactors (WBRs) in which a consortium of microorganisms convert the nitrate into nitrogen gases in anoxia, fueled by the degradation of lignocellulose. Polysaccharide-degrading strategies have been well described for various aerobic and anaerobic systems, including the use of carbohydrate-active enzymes, utilization of lytic polysaccharide monooxygenases (LPMOs) and other redox enzymes, as well as the use of cellulosomes and polysaccharide utilization loci (PULs).

View Article and Find Full Text PDF

Microbiome-directed dietary interventions such as microbiota-directed fibers (MDFs) have a proven track record in eliciting responses in beneficial gut microbes and are increasingly being promoted as an effective strategy to improve animal production systems. Here we used initial metataxonomic data on fish gut microbiomes as well as a wealth of a priori mammalian microbiome knowledge on α-mannooligosaccharides (MOS) and β-mannan-derived MDFs to study effects of such feed supplements in Atlantic salmon (Salmo salar) and their impact on its gut microbiome composition and functionalities. Our multi-omic analysis revealed that the investigated MDFs (two α-mannans and an acetylated β-galactoglucomannan), at a dose of 0.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the gut microbiome is crucial for sustainable aquaculture as it affects fish digestion, metabolism, health, and growth.
  • The Salmon Microbial Genome Atlas has compiled 211 high-quality bacterial genomes from wild and farmed Atlantic salmon, revealing diverse taxonomic classifications and new species.
  • The study characterized key bacterial populations that can break down dietary fibers and produce beneficial compounds, providing a valuable resource for future research on salmon nutrition and health.
View Article and Find Full Text PDF

We present new genomes from the bacterial symbiont Candidatus Dactylopiibacterium carminicum obtained from non-domesticated carmine cochineals belonging to the scale insect Dactylopius (Hemiptera: Coccoidea: Dactylopiidae). As Dactylopiibacterium has not yet been cultured in the laboratory, metagenomes and metatranscriptomics have been key in revealing putative symbiont functions. Dactylopiibacterium is a nitrogen-fixing beta-proteobacterium that may be vertically transmitted and shows differential gene expression inside the cochineal depending on the tissue colonized.

View Article and Find Full Text PDF

microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.

View Article and Find Full Text PDF

MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.

View Article and Find Full Text PDF

Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome-centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants.

View Article and Find Full Text PDF

Microorganisms play a primary role in regulating biogeochemical cycles and are a valuable source of enzymes that have biotechnological applications, such as carbohydrate-active enzymes (CAZymes). However, the inability to culture the majority of microorganisms that exist in natural ecosystems restricts access to potentially novel bacteria and beneficial CAZymes. While commonplace molecular-based culture-independent methods such as metagenomics enable researchers to study microbial communities directly from environmental samples, recent progress in long-read sequencing technologies are advancing the field.

View Article and Find Full Text PDF

Phylogenetic and functional group analysis of the genomes of anaerobic bacteria isolated from Periplaneta americana digestive tracts suggest that they represent novel Lachnospiraceae genera. PAL113 and PAL227 isolate genomes encoded short-chain fatty acid biosynthetic pathways and plant fiber and chitin catabolism and other carbohydrate utilization genes common in related Lachnospiraceae species, yet the presence of operons containing flagellar assembly pathways were among several distinguishing features. In general, PAL113 and PAL227 isolates encode an array of gene products that would enable them to thrive in the insect gut environment and potentially play a role in host diet processing.

View Article and Find Full Text PDF

Microbiomes and their enzymes process many of the nutrients accessible in the gastrointestinal tract of bilaterians and play an essential role in host health and nutrition. In this review, we describe recent insights into nutrient processing in microbiomes across three exemplary yet contrasting gastrointestinal ecosystems (humans, ruminants and insects), with focus on bacterial mechanisms for the utilization of common and atypical dietary glycans as well as host-derived mucus glycans. In parallel, we discuss findings from multi-omic studies that have provided new perspectives on understanding glycan-dependent interactions and the complex food-webs of microbial populations in their natural habitat.

View Article and Find Full Text PDF

Omnivorous animals, including humans, harbor diverse, species-rich gut communities that impact their growth, development, and homeostasis. Model invertebrates are broadly accessible experimental platforms that enable linking specific species or species groups to host phenotypes, yet often their specialized diets and distinct gut microbiota make them less comparable to human and other mammalian and gut communities. The omnivorous cockroach Periplaneta americana harbors ∼4 × 10 bacterial genera within its digestive tract and is enriched with taxa commonly found in omnivorous mammals (i.

View Article and Find Full Text PDF

Bacterial binding to platelets is a key step in the development of infective endocarditis (IE). Sialic acid, a common terminal carbohydrate on host glycans, is the major receptor for streptococci on platelets. So far, all defined interactions between streptococci and sialic acid on platelets are mediated by serine-rich repeat proteins (SRRPs).

View Article and Find Full Text PDF

Diarrheagenic can be separated into six distinct pathotypes, with enteroaggregative (EAEC) and diffusely-adherent (DAEC) among the least characterized. To gain additional insights into these two pathotypes we performed whole genome sequencing of ten DAEC, nine EAEC strains, isolated from Mexican children with diarrhea, and one EAEC plus one commensal strains isolated from an adult with diarrhea and a healthy child, respectively. These genome sequences were compared to 85 genomes available in public databases.

View Article and Find Full Text PDF

Beneficial gut microbes can facilitate insect growth on diverse diets. The omnivorous American cockroach, (Insecta: Blattodea), thrives on a diet rich in plant polysaccharides and harbors a species-rich gut microbiota responsive to host diet. are among the most abundant taxa in and other cockroaches, based on cultivation-independent gut community profiling, and these potentially polysaccharolytic bacteria may contribute to host diet processing.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored the ability of four yeast strains to assimilate alkanes in the presence of heavy metals, focusing on Candida pseudoglaebosa ENCB-7 and three strains of Kodamaea ohmeri.
  • All four strains were able to assimilate several n-alkanes (six carbons or more) at acidic pH levels, with K. ohmeri strains also utilizing branched alkanes and n-octanol.
  • The research found that specific CYP52 genes were induced by certain alkanes and glucose, indicating differing transcriptional responses that enhance the yeasts' degradation capabilities under challenging conditions.
View Article and Find Full Text PDF

The aim of this study was to examine four strains of two yeast species in relation to their capability for assimilating alkanes in the presence of heavy metals (HMs). The four strains tested were Candida pseudoglaebosa ENCB-7 and Kodamaea ohmeri ENCB-8R, ENCB-23, and ENCB-VIK. Determination was made of the expression of CYP52 genes involved in alkane hydroxylation.

View Article and Find Full Text PDF

The scale insect produces high amounts of carminic acid, which has historically been used as a pigment by pre-Hispanic American cultures. Nowadays carmine is found in food, cosmetics, and textiles. Metagenomic approaches revealed that spp.

View Article and Find Full Text PDF

The domesticated carmine cochineal Dactylopius coccus (scale insect) has commercial value and has been used for more than 500 years for natural red pigment production. Besides the domesticated cochineal, other wild Dactylopius species such as Dactylopius opuntiae are found in the Americas, all feeding on nutrient poor sap from native cacti. To compensate nutritional deficiencies, many insects harbor symbiotic bacteria which provide essential amino acids or vitamins to their hosts.

View Article and Find Full Text PDF

Dactylopius species, known as cochineal insects, are the source of the carminic acid dye used worldwide. The presence of two Wolbachia strains in Dactylopius coccus from Mexico was revealed by PCR amplification of wsp and sequencing of 16S rRNA genes. A metagenome analysis recovered the genome sequences of Candidatus Wolbachia bourtzisii wDacA (supergroup A) and Candidatus Wolbachia pipientis wDacB (supergroup B).

View Article and Find Full Text PDF

We studied fungal species associated with the carmine cochineal Dactylopius coccus and other non-domesticated Dactylopius species using culture-dependent and -independent methods. Thirty seven fungi were isolated in various culture media from insect males and females from different developmental stages and Dactylopius species. 26S rRNA genes and ITS sequences, from cultured fungal isolates revealed different species of Cryptococcus, Rhodotorula, Debaryomyces, Trametes, and Penicillium, which are genera newly associated with Dactylopius.

View Article and Find Full Text PDF

The study of microorganisms that pervade each and every part of this planet has encountered many challenges through time such as the discovery of unknown organisms and the understanding of how they interact with their environment. The aim of this review is to take the reader along the timeline and major milestones that led us to modern metagenomics. This new and thriving area is likely to be an important contributor to solve different problems.

View Article and Find Full Text PDF

The microbiota associated with spontaneous fermentation of vegetables in a saline substrate may represent an important group of bacteria in the food industry. In this work, the lactic acid bacteria (LAB) Weissella cibaria, Lactobacillus plantarum, Lactobacillus paraplantarum, and Leuconostoc citreum were identified by partial 16S rRNA gene sequence analysis. In addition, entophytic bacteria such as Pantoea eucalypti, Pantoea anthophila, Enterobacter cowanii, and Enterobacter asburiae were detected, but they were irrelevant for the fermentation process and were inhibited after 12 h of fermentation when the pH decreased from 6.

View Article and Find Full Text PDF

The bark beetles of the genus Dendroctonus feed on phloem that is a nitrogen-limited source. Nitrogen fixation and nitrogen recycling may compensate or alleviate such a limitation, and beetle-associated bacteria capable of such processes were identified. Raoultella terrigena, a diazotrophic bacteria present in the gut of Dendroctonus rhizophagus and D.

View Article and Find Full Text PDF