Publications by authors named "Arturo Sarmiento-Reyes"

Achieving the smart motion of any autonomous or semi-autonomous robot requires an efficient algorithm to determine a feasible collision-free path. In this paper, a novel collision-free path homotopy-based path-planning algorithm applied to planar robotic arms is presented. The algorithm utilizes homotopy continuation methods (HCMs) to solve the non-linear algebraic equations system (NAES) that models the robot's workspace.

View Article and Find Full Text PDF

In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods.

View Article and Find Full Text PDF

Unlabelled: This work presents a direct procedure to apply Padé method to find approximate solutions for nonlinear differential equations. Moreover, we present some cases study showing the strength of the method to generate highly accurate rational approximate solutions compared to other semi-analytical methods. The type of tested nonlinear equations are: a highly nonlinear boundary value problem, a differential-algebraic oscillator problem, and an asymptotic problem.

View Article and Find Full Text PDF

Abstract: In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity.

View Article and Find Full Text PDF