Publications by authors named "Arturo Mateos"

Hierarchy in natural and synthetic materials has been shown to grant these architected materials properties unattainable independently by their constituent materials. While exceptional mechanical properties such as extreme resilience and high deformability have been realized in many human-made three-dimensional (3D) architected materials using beam-and-junction-based architectures, stress concentrations and constraints induced by the junctions limit their mechanical performance. A new hierarchical architecture in which fibers are interwoven to construct effective beams is presented.

View Article and Find Full Text PDF

The creation of materials with a combination of high strength, substantial deformability and ductility, large elastic limit and low density represents a long-standing challenge, because these properties are, in general, mutually exclusive. Using a combination of two-photon lithography and high-temperature pyrolysis, we have created micro-sized pyrolytic carbon with a tensile strength of 1.60 ± 0.

View Article and Find Full Text PDF

Hierarchically designed structures with architectural features that span across multiple length scales are found in numerous hard biomaterials, like bone, wood, and glass sponge skeletons, as well as manmade structures, like the Eiffel Tower. It has been hypothesized that their mechanical robustness and damage tolerance stem from sophisticated ordering within the constituents, but the specific role of hierarchy remains to be fully described and understood. We apply the principles of hierarchical design to create structural metamaterials from three material systems: (i) polymer, (ii) hollow ceramic, and (iii) ceramic-polymer composites that are patterned into self-similar unit cells in a fractal-like geometry.

View Article and Find Full Text PDF