We study numerically the distribution of zero crossings in one-dimensional elastic interfaces described by an overdamped Langevin dynamics with periodic boundary conditions. We model the elastic forces with a Riesz-Feller fractional Laplacian of order z=1+2ζ, such that the interfaces spontaneously relax, with a dynamical exponent z, to a self-affine geometry with roughness exponent ζ. By continuously increasing from ζ=-1/2 (macroscopically flat interface described by independent Ornstein-Uhlenbeck processes [Phys.
View Article and Find Full Text PDFWe study numerically the correlations and the distribution of intervals between successive zeros in the fluctuating geometry of stochastic interfaces, described by the Edwards-Wilkinson equation. For equilibrium states we find that the distribution of interval lengths satisfies a truncated Sparre-Andersen theorem. We show that boundary-dependent finite-size effects induce nontrivial correlations, implying that the independent interval property is not exactly satisfied in finite systems.
View Article and Find Full Text PDF