Pigment Cell Melanoma Res
March 2024
MFSD12 functions as a transmembrane protein required for import of cysteine into melanosomes and lysosomes. The MFSD12 locus has been associated with phenotypic variation in skin color across African, Latin American, and East Asian populations. The frequency of a particular MFSD12 coding variant, rs2240751 (MAF = 0.
View Article and Find Full Text PDFNiemann-Pick C1 disease (NPC1) is a rare, fatal neurodegenerative disease caused by mutations in , which encodes the lysosomal cholesterol transport protein NPC1. Disease pathology involves lysosomal accumulation of cholesterol and lipids, leading to neurological and visceral complications. Targeting the central nervous system (CNS) from systemic circulation complicates treatment of neurological diseases with gene transfer techniques.
View Article and Find Full Text PDFThe rare, fatal neurodegenerative disorder Niemann-Pick disease type C1 (NPC1) arises from lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. The timing and severity of NPC1 clinical presentation is extremely heterogeneous.
View Article and Find Full Text PDFNiemann-Pick disease type C1 (NPC1) is a rare, fatal neurodegenerative disorder characterized by lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. NPC1 is extremely heterogeneous in the timing of clinical presentation and is associated with a wide spectrum of causative mutations.
View Article and Find Full Text PDFNiemann-Pick disease, type C1 (NPC1) is a heritable lysosomal storage disease characterized by a progressive neurological degeneration that causes disability and premature death. A murine model of NPC1 disease (Npc1-/-) displays a rapidly progressing form of NPC1 disease which is characterized by weight loss, ataxia, increased cholesterol storage, loss of cerebellar Purkinje neurons and early lethality. To test the potential efficacy of gene therapy for NPC1, we constructed adeno-associated virus serotype 9 (AAV9) vectors to deliver the NPC1 gene under the transcriptional control of the neuronal-specific (CamKII) or a ubiquitous (EF1a) promoter.
View Article and Find Full Text PDFThe neural crest (NC) is a population of embryonic stem cells that gives rise to numerous cell types, including the glia and neurons of the peripheral and enteric nervous systems and the melanocytes of the skin and hair. Mutations in genes and genetic pathways regulating NC development lead to a wide spectrum of human developmental disorders collectively called neurocristopathies. To identify molecular pathways regulating NC development and to understand how alterations in these processes lead to disease, we established an N-ethyl-N-nitrosourea (ENU) mutagenesis screen utilizing a mouse model sensitized for NC defects, Sox10(LacZ/+).
View Article and Find Full Text PDFHaploinsufficiency for the transcription factor SOX10 is associated with the pigmentary deficiencies of Waardenburg syndrome (WS) and is modeled in Sox10 haploinsufficient mice (Sox10(LacZ/+)). As genetic background affects WS severity in both humans and mice, we established an N-ethyl-N-nitrosourea (ENU) mutagenesis screen to identify modifiers that increase the phenotypic severity of Sox10(LacZ/+) mice. Analysis of 230 pedigrees identified three modifiers, named modifier of Sox10 neurocristopathies (Mos1, Mos2 and Mos3).
View Article and Find Full Text PDFMutations in the transcription factor Sox10 or Endothelin Receptor B (Ednrb) result in Waardenburg Syndrome Type IV (WS-IV), which presents with deficiencies of neural crest derived melanocytes (hypopigmentation) and enteric ganglia (hypoganglionosis). As Sox10 and Ednrb are expressed in mouse migratory neural crest cells and melanoblasts, we investigated the possibility that SOX10 and EDNRB function through a hierarchical relationship during melanocyte development. However, our results support a distinct rather than hierarchical relationship.
View Article and Find Full Text PDFPancreatic insufficiency (PI) when left untreated results in a state of malnutrition due to an inability to absorb nutrients. Frequently, PI is diagnosed as part of a larger clinical presentation in cystic fibrosis or Shwachman-Diamond syndrome. In this study, a mouse model for isolated exocrine PI was identified in a mouse line generated by a transgene insertion.
View Article and Find Full Text PDFSummary WNT1 and WNT3a have been described as having redundant roles in promoting the development of neural crest-derived melanocytes (NC-Ms). We used cell lineage restricted retroviral infections to examine the effects of WNT signaling on defined cell types in neural crest cultures. RCAS retroviral infections were targeted to melanoblasts (NC-M precursor cells) derived from transgenic mice that express the virus receptor, TVA, under the control of a melanoblast promoter (DCT).
View Article and Find Full Text PDFAn in vitro gene complementation approach has been developed to dissect gene function and regulation in neural crest (NC) development and disease. The approach uses the avian RCAS virus to express genes in NC cells derived from transgenic mice expressing the RCAS receptor TVA, under the control of defined promoter elements. Constructs for creating TVA transgenic mice were developed using site-specific recombination GATEWAY (GW), compatible vectors that can also be used to facilitate analysis of genomic fragments for transcriptional regulatory elements.
View Article and Find Full Text PDFTo gain insight into melanoma pathogenesis, we characterized an insertional mouse mutant, TG3, that is predisposed to develop multiple melanomas. Physical mapping identified multiple tandem insertions of the transgene into intron 3 of Grm1 (encoding metabotropic glutamate receptor 1) with concomitant deletion of 70 kb of intronic sequence. To assess whether this insertional mutagenesis event results in alteration of transcriptional regulation, we analyzed Grm1 and two flanking genes for aberrant expression in melanomas from TG3 mice.
View Article and Find Full Text PDFNiemann-Pick disease type C (NPC) is a neurodegenerative disorder with major visceral complications, including liver disease that can be fatal before onset of neurodegeneration. We have sought to determine the extent to which visceral disease contributes to neurodegeneration by making transgenic mice in which the wild-type NPC1 protein is expressed primarily in the CNS using the prion promoter. When the transgene was introduced into the npc1(-/-) animals neurodegeneration was prevented, a 'normal' lifespan occurred and the sterility of npc1(-/-) mice was corrected.
View Article and Find Full Text PDF