Publications by authors named "Arturo I Hernandez Serrano"

Article Synopsis
  • * Current research methods include gravimetric analysis and advanced techniques like GARField-NMR and optical coherence tomography, which provide data in various dimensions.
  • * This study introduces terahertz time-domain spectroscopy (THz-TDS) as a new method for analyzing the drying process, offering 2D hydration maps of polymer latexes and confirming known drying phenomena.
View Article and Find Full Text PDF

In this study we present the first in vivo clinical study of patients with eczema and psoriasis using terahertz (THz) sensing. Eczema and psoriasis patients were measured using a handheld THz scanner, both before and after the application of moisturiser. We show that THz sensing can distinguish between dry and healthy skin in different regions of the body.

View Article and Find Full Text PDF

Optical sensors and sensing technologies are playing a more and more important role in our modern world. From micro-probes to large devices used in such diverse areas like medical diagnosis, defence, monitoring of industrial and environmental conditions, optics can be used in a variety of ways to achieve compact, low cost, stand-off sensing with extreme sensitivity and selectivity. Actually, the challenges to the design and functioning of an optical sensor for a particular application requires intimate knowledge of the optical, material, and environmental properties that can affect its performance.

View Article and Find Full Text PDF

Recently, finite rate of innovation methods have been successfully applied to achieve low sampling rates in many areas, such as for ultrasound and radio signals. However, to the best of our knowledge, there are no journal publications applying this to real terahertz signals. In this work, we mathematically describe a finite rate of innovation method applied specifically to terahertz signals both experimentally and in simulation.

View Article and Find Full Text PDF

Water content of the skin is an important parameter for controlling the penetration rate of chemicals through the skin barrier; therefore, for transdermal patches designed for drug delivery to be successful, the effects of the patches on the water content of the skin must be understood. Terahertz (THz) spectroscopy is a technique which is being increasingly investigated for biomedical applications due to its high sensitivity to water content and non-ionizing nature. In this study, we used THz measurements of the skin (in vivo) to observe the effect of partially and fully occlusive skin patches on the THz response of the skin after the patches had been applied for 24 h.

View Article and Find Full Text PDF