Background: Familial Mediterranean Fever (FMF) is a monogenic disease caused by gain-of-function mutations in the MEditerranean FeVer (MEFV) gene. The molecular dysregulations induced by these mutations and the associated causal mechanisms are complex and intricate.
Objective: We sought to provide a computational model capturing the mechanistic details of biological pathways involved in FMF physiopathology and enabling the study of the patient's immune cell dynamics.
The alternate growth of between a unicellular yeast form and a multicellular hyphal form is crucial for its ability to cause disease. Interestingly, both morphological forms support distinct functions during proliferation in the human host. We previously identified (C2_08890W_A), encoding a zinc-finger transcription factor of the CH family, in a systematic screen of genes whose overexpression contributes to ' morphological changes.
View Article and Find Full Text PDFTranscription factor Rme1 is conserved among ascomycetes and regulates meiosis and pseudohyphal growth in Saccharomyces cerevisiae. The genome of the meiosis-defective pathogen Candida albicans encodes an Rme1 homolog that is part of a transcriptional circuitry controlling hyphal growth. Here, we use chromatin immunoprecipitation and genome-wide expression analyses to study a possible role of Rme1 in C.
View Article and Find Full Text PDFCandida albicans is part of the human gastrointestinal (GI) microbiota. To better understand how C. albicans efficiently establishes GI colonisation, we competitively challenged growth of 572 signature-tagged strains (~10% genome coverage), each conditionally overexpressing a single gene, in the murine gut.
View Article and Find Full Text PDFSporothrix schenckii is a fungal pathogen of humans and the etiological agent of sporotrichosis. In fungi, proper protein glycosylation is usually required for normal composition of cell wall and virulence. Upon addition of precursor oligosaccharides to nascent proteins in the endoplasmic reticulum, glycans are further modified by Golgi-glycosyl transferases.
View Article and Find Full Text PDFThe N-linked glycosylation is a ubiquitous protein modification in eukaryotic cells. During the N-linked glycan synthesis, the precursor Glc(3)Man(9)GlcNAc(2) is processed by endoplasmic reticulum (ER) glucosidases I, II and α1,2-mannosidase, before transporting to the Golgi complex for further structure modifications. In fungi of medical relevance, as Candida albicans and Aspergillus, it is well known that ER glycosidases are important for cell fitness, cell wall organization, virulence, and interaction with the immune system.
View Article and Find Full Text PDFSporothrix (Sp.) schenckii is a pathogenic fungus that infects humans and animals, and is responsible for the disease named sporotrichosis. The cell wall of this fungus has glycoproteins with a high content of mannose and rhamnose units, which are synthesized by endoplasmic reticulum- and Golgi-localized glycosyltransferases.
View Article and Find Full Text PDFThe cell surface of Candida albicans is enriched with highly glycosylated mannoproteins that are involved in the interaction with host tissues. N- and O-glycosylation are post-translational modifications that initiate in the endoplasmic reticulum, and finalize in the Golgi. The KRE2/MNT1 family encode a set of multifunctional mannosyltransferases that participate in O-, N- and phosphomannosylation.
View Article and Find Full Text PDFProtein glycosylation is one of the most common post-translational modifications present in the eukaryotic cell. The N-linked glycosylation is a biosynthetic pathway where an oligosaccharide is added to asparagine residues within the endoplasmic reticulum. Upon addition of the N-linked glycan to nascent proteins, alpha-glucosidase I removes the outermost alpha1,2-glucose unit from the N-linked core Glc(3)Man(9)GlcNAc(2).
View Article and Find Full Text PDF