Publications by authors named "Arturo Garcia-Horsman"

Heparin-binding growth-associated molecule (pleiotrophin) is a neurite outgrowth-promoting secretory protein that lines developing fiber tracts in juvenile CNS (central nervous system). Previously, we have shown that heparin-binding growth-associated molecule (HB-GAM) reverses the CSPG (chondroitin sulfate proteoglycan) inhibition on neurite outgrowth in the culture medium of primary CNS neurons and enhances axon growth through the injured spinal cord in mice demonstrated by two-photon imaging. In this study, we have started studies on the possible role of HB-GAM in enhancing functional recovery after incomplete spinal cord injury (SCI) using cervical lateral hemisection and hemicontusion mouse models.

View Article and Find Full Text PDF

This collection of contributions from the European Network on Understanding Gastrointestinal Absorption-related Processes (UNGAP) community assembly aims to provide information on some of the current and newer methods employed to study the behaviour of medicines. It is the product of interactions in the immediate pre-Covid period when UNGAP members were able to meet and set up workshops and to discuss progress across the disciplines. UNGAP activities are divided into work packages that cover special treatment populations, absorption processes in different regions of the gut, the development of advanced formulations and the integration of food and pharmaceutical scientists in the food-drug interface.

View Article and Find Full Text PDF

Despite some promising results, the majority of patients do not benefit from T cell therapies, as tumors prevent T cells from entering the tumor, shut down their activity, or downregulate key antigens. Due to their nature and mechanism of action, oncolytic viruses have features that can help overcome many of the barriers currently facing T cell therapies of solid tumors. This study aims to understand how four different oncolytic viruses (adenovirus, vaccinia virus, herpes simplex virus, and reovirus) perform in that task.

View Article and Find Full Text PDF

The Ang II (Angiotensin II)-Angiotensin-(1-7) axis of the Renin Angiotensin System encompasses 3 enzymes that form Angiotensin-(1-7) [Ang-(1-7)] directly from Ang II: ACE2 (angiotensin-converting enzyme 2), PRCP (prolylcarboxypeptidase), and POP (prolyloligopeptidase). We investigated their relative contribution to Ang-(1-7) formation in vivo and also ex vivo in serum, lungs, and kidneys using models of genetic ablation coupled with pharmacological inhibitors. In wild-type (WT) mice, infusion of Ang II resulted in a rapid increase of plasma Ang-(1-7).

View Article and Find Full Text PDF

In the aging brain, the correct balance of neural transmission and its regulation is of particular significance, and neuropeptides have a significant role. Prolyl oligopeptidase (PREP) is a protein highly expressed in brain, and evidence indicates that it is related to aging and in neurodegenration. Although PREP is regarded as a peptidase, the physiological substrates in the brain have not been defined, and after intense research, the molecular mechanisms where this protein is involved have not been defined.

View Article and Find Full Text PDF

Prolyl oligopeptidase (PREP) has been implicated in neurodegeneration and neuroinflammation and has been considered a drug target to enhance memory in dementia. However, the true physiological role of PREP is not yet understood. In this paper, we report the phenotyping of a mouse line where the PREP gene has been knocked out.

View Article and Find Full Text PDF

Background: Liver failure in experimental animals or in human cirrhosis elicits neuroinflammation. Prolyl oligopeptidase (PREP) has been implicated in neuroinflammatory events in neurodegenerative diseases: PREP protein levels are increased in brain glial cells upon neuroinflammatory insults, but the circulating PREP activity levels are decreased in multiple sclerosis patients in a process probably mediated by bioactive peptides. In this work, we studied the variation of PREP levels upon liver failure and correlated it with several inflammatory markers to conclude on the relation of PREP with systemic and/or neuroinflammation.

View Article and Find Full Text PDF

Prolyl oligopeptidase (PREP) has been considered as a drug target for the treatment of neurodegenerative diseases. In plasma, PREP has been found altered in several disorders of the central nervous system including multiple sclerosis (MS). Oxidative stress and the levels of an endogenous plasma PREP inhibitor have been proposed to decrease PREP activity in MS.

View Article and Find Full Text PDF

Background: The serum anticholinergic activity (SAA) assay has been used to quantify patients' anticholinergic load. In addition, several ranked lists of anticholinergic drugs have been developed to assess anticholinergic drug burden.

Objective: This study investigated whether SAA assay results and scores from three ranked lists of anticholinergic drugs (Carnahan's Anticholinergic Drug Scale, Rudolph's Anticholinergic Risk Scale, and Chew's list) are associated with anticholinergic adverse drug events (ADEs) in older people.

View Article and Find Full Text PDF

Purpose: Celiac disease is an autoimmune-mediated enteropathy characterized by adaptive and innate immune responses to dietary gluten in wheat, rye and barley in genetically susceptible individuals. Gluten-derived gliadin peptides are deamidated by transglutaminase 2 (TG2), leading to an immune response in the small-intestinal mucosa. TG2 inhibitors have therefore been suggested as putative drugs for celiac disease.

View Article and Find Full Text PDF

Prolyl oligopeptidase (PREP) cleaves short peptides at the C-side of proline. Although several proline containing neuropeptides have been shown to be efficiently cleaved by PREP in vitro, the actual physiological substrates of this peptidase are still a matter of controversy. The aim of this study was to evaluate the changes in the peptidome of rat tissues caused by a repeated 4-day administration of the potent and specific PREP inhibitor KYP-2047, using our recently developed iTRAQ-based technique.

View Article and Find Full Text PDF

Altered prolyl oligopeptidase (PREP) activity is found in many common neurological and other genetic disorders, and in some cases PREP inhibition may be a promising treatment. The active site of PREP resides in an internal cavity; in addition to the direct interaction between active site and substrate or inhibitor, the pathway to reach the active site (the gating mechanism) must be understood for more rational inhibitor design and understanding PREP function. The gating mechanism of PREP has been investigated through molecular dynamics (MD) simulation combined with crystallographic and mutagenesis studies.

View Article and Find Full Text PDF

Prolyl endopeptidase (PREP), probably acting through the inositol cycle, has been implicated in memory and learning. However, the physiological role of PREP is unknown. It has been shown that PREP expression, regulated in cerebellar granule cells, has probably a role in cell proliferation and differentiation.

View Article and Find Full Text PDF

Inhibitors of prolyl oligopeptidase have been reported to be neuroprotective, especially in memory loss caused by lesion or disease. This enzyme has also been implicated in neurodegeneration. Although it was initially thought that prolyl oligopeptidase functioned to directly control of neuropeptide levels, emerging evidence points out in part that this peptidase modulates peptides which in turn regulate inflammatory responses.

View Article and Find Full Text PDF

Prolyl oligopeptidase (POP) is a serine protease that cleaves peptides shorter than 30-mer at the carboxyl side of an internal proline. POP has been proposed to be involved in some pathologies including mood disorders and neurodegenerative diseases. However, the physiological role of POP remains unknown.

View Article and Find Full Text PDF

Introduction: Catechol-O-methyltransferase (COMT) has soluble (S-COMT) and membrane bound (MB-COMT) isoforms. Our aims were to assess the behavioral phenotype of S-COMT mutant mice and to clarify the role of MB-COMT in dopamine metabolism in different brain areas.

Methods: Behavioral phenotype of the S-COMT mutant mice was assessed using a test battery designed to describe anxiety phenotype, spontaneous locomotor activity, sensorymotor gating, social behavior, and pain sensitivity.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a complex, inflammatory and neurodegenerative disease of the central nervous system leading to long-term disability. Recent studies indicate a close association between inflammation and neurodegeneration in all lesions and disease stages of MS. Prolyl oligopeptidase (POP) is a proline-specific serine protease that cleaves several neuroactive peptides.

View Article and Find Full Text PDF

Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyses proline-containing peptides shorter than 30 amino acids. POP may be associated with cognitive functions, possibly via the cleavage of neuropeptides. Recent studies have also suggested novel non-hydrolytic and non-catalytic functions for POP.

View Article and Find Full Text PDF

In vitro, prolyl oligopeptidase (POP) cleaves proline-containing bioactive peptides such as substance P, gonadotropin-releasing hormone, thyrotropin-releasing hormone, arginine-vasopressin, and neurotensin. Based on specific in vivo inhibition, POP has been suggested to be involved in cognitive and psychiatric processes but the identity of its physiological substrates has remained inconclusive. We have combined (a) sample snap-freezing and boiling buffer extraction, to limit protein degradation and reduce sample complexity; (b) pH two-dimensional liquid reverse-phase chromatography to enhance resolution; and (c) iTRAQ isobaric labeling to identify the rat brain peptides whose levels were differentially changed due to in vivo POP inhibition.

View Article and Find Full Text PDF

Catechol-O-methyl transferase (COMT) methylates catechols, such as L-dopa and dopamine, and COMT deficient mice show dramatic shifts in the metabolite levels of catechols. Increase in catechol metabolite levels can, in principle, lead to oxidative stress but no indices of oxidative stress have been reported in COMT-knockout (KO) mice [Forsberg MM, Juvonen RO, Helisalmi P, Leppanen J, Gogos JA, Karayiorgou M, et al. Lack of increased oxidative stress in catechol-O-methyltransferase (COMT)-deficient mice.

View Article and Find Full Text PDF

Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyses proline-containing peptides shorter than 30-mer, including many bioactive peptides. The distribution of POP in the brain has been studied but little is known about the distribution of peripheral POP. We used immunohistochemistry to localize POP in mouse whole-body sections and at the cellular level in peripheral tissues.

View Article and Find Full Text PDF

Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes proline-containing peptides shorter than 30-mer. It has been suggested that POP is associated with cognitive functions and inositol 1,4,5-triphosphate (IP(3)) signaling. However, little is known about the distribution and physiological role of POP in the brain.

View Article and Find Full Text PDF

A unilateral 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease was used to determine an effective dose to abolish circling behaviour of the continuous intrastriatal infusions of L-dopa via osmotic minipumps into the lesioned striatum. This 2-week L-dopa treatment evoked a dose-dependent decrease in the contralateral rotations induced by acute intraperitoneal L-dopa and carbidopa that was sustained at least for 10 weeks. The minimum effective dose of intrastriatal L-dopa was 3 microg/hr.

View Article and Find Full Text PDF