Minimally invasive manipulation of cell signaling is critical in basic neuroscience research and in developing therapies for neurological disorders. Here, we describe a wireless chemomagnetic neuromodulation platform for the on-demand control of primary striatal neurons that relies on nanoscale heating events. Iron oxide magnetic nanoparticles (MNPs) are functionally coated with thermoresponsive poly (oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) brushes loaded with dopamine.
View Article and Find Full Text PDFHydrogenated microcrystalline silicon (µc-Si:H) and epitaxial silicon (epi-Si) films have been produced from SiF, H and Ar mixtures by plasma enhanced chemical vapor deposition (PECVD) at 200 °C. Here, both films were produced using identical deposition conditions, to determine if the conditions for producing µc-Si with the largest crystalline fraction (X), will also result in epi-Si films that encompass the best quality and largest crystalline silicon (c-Si) fraction. Both characteristics are of importance for the development of thin film transistors (TFTs), thin film solar cells and novel 3D devices since epi-Si films can be grown or etched in a selective manner.
View Article and Find Full Text PDFIntroduction: Renal transplantation (RT) has evolved to improve its functionality. Some factors have been little studied, one of which is hyperuricemia and its impact on renal graft function. The objective of this study is to determine the prevalence of complications of renal transplantation and its influence on hyperuricemia values in the first year of evolution.
View Article and Find Full Text PDF