J Opt Soc Am A Opt Image Sci Vis
December 2022
We present synthetic-phase-modulated interferometric synthetic aperture microscopy (SPM-ISAM), a method to perform 3D object reconstructions from data acquired with confocal broadband interferometric microscopy (BIM) that reconstructs images virtually free of coherent and depth-dependent defocus artifacts. This is achieved by implementing a sinusoidal SPM method in combination with an ISAM reconstruction algorithm that uses relatively low-modulation frequencies compared with acquisition frequencies. A theoretical framework and numerical results are provided here.
View Article and Find Full Text PDFWe present a technically simple implementation of quantitative phase imaging in confocal microscopy based on synthetic optical holography with sinusoidal-phase reference waves. Using a Mirau interference objective and low-amplitude vertical sample vibration with a piezo-controlled stage, we record synthetic holograms on commercial confocal microscopes (Nikon, model: A1R; Zeiss: model: LSM-880), from which quantitative phase images are reconstructed. We demonstrate our technique by stain-free imaging of cervical (HeLa) and ovarian (ES-2) cancer cells and stem cell (mHAT9a) samples.
View Article and Find Full Text PDFWe demonstrate an innovative technique based on the Pancharatnam-Berry phase that can be used to determine whether an optical system characterized by a Jones matrix is homogeneous or inhomogeneous, containing orthogonal or nonorthogonal eigenpolarizations, respectively. Homogeneous systems have a symmetric geometric phase morphology showing line dislocations and sets of polarization states with an equal geometric phase. In contrast, the morphology of inhomogeneous systems exhibits phase singularities, where the Pancharatnam-Berry phase is undetermined.
View Article and Find Full Text PDF