Front Cell Dev Biol
August 2024
Introduction: Breast cancer (BC) is the leading cause of death among women, primarily due to its potential for metastasis. As BC progresses, the extracellular matrix (ECM) produces more type-I collagen, resulting in increased stiffness. This alteration influences cellular behaviors such as migration, invasion, and metastasis.
View Article and Find Full Text PDFIntroduction: Breast cancer (BC) is the leading cause of cancer-related deaths among women, with triple-negative breast cancer (TNBC) representing one of the most aggressive and treatment-resistant subtypes. In this study, we aimed to evaluate the antitumor potential of C14 and P8 molecules in both TNBC and radioresistant TNBC cells. These compounds were chosen for their ability to stabilize the complex formed by the overactivated form of K-Ras4B and its membrane transporter (PDE6δ).
View Article and Find Full Text PDFAlthough there are currently several factors that allow measuring the risk of having breast cancer or predicting its progression, the underlying causes of this malignancy have remained unknown. Several molecular studies have described some mechanisms involved in the progress of breast cancer. These have helped in identifying new targets with therapeutic potential.
View Article and Find Full Text PDFBreast cancer (BC) is the most commonly occurring cancer and primary cause of cancer‑related mortality in women worldwide. Investigations into BC have been conducted in in vitro and in vivo models. Of these models, the cultivation of tumor cell lines in two‑dimensional models is the most widely employed in vitro model to study tumor physiology.
View Article and Find Full Text PDFImplementations of suitable cell culture systems of the human intestine have been essential tools in the study of the interaction among organs, commensal microbiota, pathogens and parasites. Due to the great complexity exhibited by the intestinal tissue, researchers have been developing / systems to diminish the gap between conventional cell culture models and the human intestine. These models are able to reproduce different structures and functional aspects of the tissue.
View Article and Find Full Text PDFAlthough significant progress has been made in the implementation of new breast cancer treatments over the last three decades, this neoplasm annually continues to show high worldwide rates of morbidity and mortality. In consequence, the search for novel therapies with greater effectiveness and specificity has not come to a stop. Among the alternative therapeutic targets, the human gonadotropin-releasing hormone type I and type II (hGnRH-I and hGnRH-II, respectively) and its receptor, the human gonadotropin-releasing hormone receptor type I (hGnRHR-I), have shown to be powerful therapeutic targets to decrease the adverse effects of this disease.
View Article and Find Full Text PDFThe Gonadotropin-Releasing Hormone Receptor (GnRHR) is expressed mainly in the gonadotrope membrane of the adenohypophysis and its natural ligand, the Gonadotropin-Releasing Hormone (GnRH), is produced in anterior hypothalamus. Furthermore, both molecules are also present in the membrane of cells derived from other reproductive tissues such as the breast, endometrium, ovary, and prostate, as well as in tumors derived from these tissues. The functions of GnRH receptor and its hormone in malignant cells have been related with the decrease of proliferation and the invasiveness of those tumors however, little is known about the molecules associated with the signaling pathways regulated by both molecules in malignant cells.
View Article and Find Full Text PDFIncreased TNF-α levels have been associated with adverse pregnancy outcomes. Lipopolysaccharide (LPS), 1,1,1-trichloro-2,2-bis-(chlorophenyl)ethane (DDT), 1,1-bis-(chlorophenyl)-2,2-dichloroethene (DDE), and 1,1-dichloro-2,2-bis(chlorophenyl)ethane (DDD) induce TNF-α release in peripheral blood mononuclear cells (PBMC). Conversely, progesterone (P4) inhibits TNF-α secretion.
View Article and Find Full Text PDFThe pathogenic amoeba Entamoeba histolytica is able to migrate within various compartments of the human body. The present article reviews progress in understanding the mechanisms of cell motility in E. histolytica during human intestinal invasion and, in particular, how the three-dimensional characteristics of the environment regulate the parasite's behaviour.
View Article and Find Full Text PDFFront Cell Dev Biol
August 2016
Posttranslational modifications occurring during the biosynthesis of G protein-coupled receptors include glycosylation and palmitoylation at conserved cysteine residues located in the carboxyl-terminus of the receptor. In a number of these receptors, these modifications play an important role in receptor function and particularly, in intracellular trafficking. In the present study, the three cysteine residues present in the carboxyl-terminus of the human FSHR were replaced with glycine by site-directed mutagenesis.
View Article and Find Full Text PDFThrough research carried out in the last 25 years about the breast cancer etiology, it has been possible to estimate that less than 10 % of patients who are diagnosed with the condition are carriers of some germline or somatic mutation. The clinical reports of breast cancer patients with healthy twins and the development of disease in women without high penetrance mutations detected, warn the participation more factors in the transformation process. The high incidence of mammary adenocarcinoma in the modern woman and the urgent need for new methods of prevention and early detection have demanded more information about the role that environment and lifestyle have on the transformation of mammary gland epithelial cells.
View Article and Find Full Text PDFRecently, an increasing amount of evidence indicates that human gonadotropin-releasing hormone (hGnRH) and its receptor (hGnRHR) are important regulatory components not only to the reproduction process but also in the regulation of some cancer cell functions such as cell proliferation, in both hormone-dependent and -independent types of tumors. The hGnRHR is a naturally misfolded protein that is retained mostly in the endoplasmic reticulum; however, this mechanism can be overcome by treatment with several pharmacoperones, therefore, increasing the amount of receptors in the cell membrane. In addition, several reports indicate that the expression level of hGnRHR in tumor cells is even lower than in pituitary or gonadotrope cells.
View Article and Find Full Text PDFBouvardia ternifolia has been used medicinally to treat inflammation. In the present study, we investigate the anti-Alzheimer's potential effect of the hydroalcoholic extract of B. ternifolia through evaluation of anti-inflammatory and antioxidant activities, quantification of the percentage inhibition of acetylcholinesterase activity, protection effect against β-amyloid fibrillar-induce neurotoxicity, and the identification of the main constituents.
View Article and Find Full Text PDFHeteropterys cotinifolia (Malpighiaceae) has been used in traditional Mexican medicine mainly for the treatment of nervous disorders. However, the specific neuropharmacological activities responsible for this use remain to be defined. The present study evaluates the antidepressant and anxiolytic effects produced by the methanolic extract of Heteropterys cotinifolia and the influence of such effects on motor activity in ICR mice.
View Article and Find Full Text PDFEthnopharmacological Relevance: Heteropterys brachiata is a plant species that has been used in traditional Mexican medicine for the treatment of nervous disorders.
Aim Of The Study: To evaluate the anxiolytic, anticonvulsant, antidepressant and sedative effects produced by the methanolic extract of Heteropterys brachiata (HbMeOH) in ICR mice. Additionally, we determine the acute toxicity profiles of the extract and the presence of its main constituents.
Background: Gonadotropin-releasing hormone (GnRH) and its receptor (GnRHR) are both expressed by a number of malignant tumors, including those of the breast. In the latter, both behave as potent inhibitors of invasion. Nevertheless, the signaling pathways whereby the activated GnRH/GnRHR system exerts this effect have not been clearly established.
View Article and Find Full Text PDFRecent studies of Hibiscus sabdariffa Linn. have demonstrated that it presents diuretic, natriuretic, and potassium sparing effects. However, the mechanism that induces these effects has not yet been elucidated.
View Article and Find Full Text PDFMol Cell Endocrinol
April 2011
The pathogenic mechanisms whereby the Thr104Ile and Tyr108Cys mutations in the gonadotropin-releasing hormone receptor (GnRHR) gene cause hypogonadotropic hypogonadism in humans are unknown. Transient expression of Thr104Ile and Tyr108Cys mutants in COS-7 cells revealed that both GnRHR mutants neither bind nor respond to agonist. Removal of Lys191 rescued function of both mutants, while addition of a carboxyl-terminal targeting sequence only rescued function of the Thr104Ile mutant.
View Article and Find Full Text PDFHuman gonadotropin-releasing hormone receptor (GnRHR) and its natural ligand human gonadotropin-releasing hormone (GnRH) were initially described as signaling complexes that play a key role in reproductive functions. By binding to specific receptors present on pituitary gonadotropes, GnRH regulates the sperm and ovum maturation, as well as steroidogenesis within the context of the hypothalamus-hypophysis axis. The expression of GnRH and its receptor has clearly been established in many extra-pituitary organs.
View Article and Find Full Text PDFIn the present study, we analyzed the role of Lys191 on function, structure, and dynamic behavior of the human GnRH receptor (hGnRHR) and the formation of the Cys14-Cys200 bridge, which is essential for receptor trafficking to the plasma membrane. Several mutants were studied; mutants lacked either the Cys14-Cys200 bridge, Lys191 or both. The markedly reduced expression and function of a Cys14Ser mutant lacking the 14-200 bridge, was nearly restored to wild-type/DeltaLys191 levels upon deletion of Lys191.
View Article and Find Full Text PDFThe molecular, biochemical, and cellular characterization of EhGEF1 protein is described. Complete cDNA sequence of 1890 bp revealed an open reading frame that encodes a protein of 69 kDa. EhGEF1 is constituted of Dbl homology domain, pleckstrin homology domain, and several putative regulation sites.
View Article and Find Full Text PDFThe 240-bp alpha exon of the tight junction (TJ) protein ZO-1 pre-mRNA is alternatively spliced. Expression of both ZO-1alpha+/ZO-1alpha- isoforms results in hermetic TJs, and these become leaky when ZO-1alpha- expression prevails. The alpha exon inclusion/skipping mechanism was studied by in vivo RT-PCR splicing assays in neural and epithelial cells, utilizing a canine minigene construct containing the alpha exon, and the flanking introns and exons.
View Article and Find Full Text PDF