Autoimmune diseases (AIDs) are a group of disorders in which the immune system attacks the body's own tissues, leading to chronic inflammation and organ damage. These diseases are difficult to treat due to variability in drug PK among individuals, patient responses to treatment, and the side effects of long-term immunosuppressive therapies. In recent years, pharmacometrics has emerged as a critical tool in drug discovery and development (DDD) and precision medicine.
View Article and Find Full Text PDFObjective: The aim of this study was to develop quantitative structure-pharmacokinetics relationship (QSPKR) models for a group of xanthine derivatives with proven pharmacological activity and to investigate its applicability for the prediction of the pharmacokinetics of these compounds.
Methods: The SYBYL-X, KowWin, and MarvinSketch programs were employed to generate a total of fourteen descriptor variables for a series of new compounds: 7- and 7,8-substituted theophylline derivatives (GR-1-GR-8) and three well-known methylxanthines. Pharmacokinetic profiles of all compounds were determined after intravenous administration of studied compounds to cannulated male rats.
Itch and pain are closely related but distinct sensations that share largely overlapping mediators and receptors. We hypothesized that the novel, multi-target compound E153 has the potential to attenuate pain and pruritus of different origins. After the evaluation of sigma receptor affinity and pharmacokinetic studies, we tested the compound using different procedures and models of pain and pruritus.
View Article and Find Full Text PDFThe platelet aggregation inhibitory activity of selected xanthine-based adenosine A and A receptor antagonists was investigated, and attempts were made to explain the observed effects. The selective A receptor antagonist PSB-603 and the A receptor antagonist TB-42 inhibited platelet aggregation induced by collagen or ADP. In addition to adenosine receptor blockade, the compounds were found to act as moderately potent non-selective inhibitors of phosphodiesterases (PDEs).
View Article and Find Full Text PDFDexamethasone (DEX) given at a dose of 6 mg once-daily for 10 days is a recommended dosing regimen in patients with coronavirus disease 2019 (COVID-19) requiring oxygen therapy. We developed a population pharmacokinetic and pharmacodynamic (PopPK/PD) model of DEX anti-inflammatory effects in COVID-19 and provide simulations comparing the expected efficacy of four dosing regimens of DEX. Nonlinear mixed-effects modeling and simulations were performed using Monolix Suite version 2021R1 (Lixoft, France).
View Article and Find Full Text PDFDexamethasone (DEX) is a potent synthetic glucocorticoid used for the treatment of variety of inflammatory and immune-mediated disorders. The RECOVERY clinical trial revealed benefits of DEX therapy in COVID-19 patients. Severe SARS-CoV-2 infection leads to an excessive inflammatory reaction commonly known as a cytokine release syndrome that is associated with activation of the toll like receptor 4 (TLR4) signaling pathway.
View Article and Find Full Text PDFBackground: To verify the validity of the proposed pain treatment approach, which is based on concomitant blocking of the Transient Receptor Potential Ankyrin 1 (TRPA1) channel and phosphodiesterases (PDEs) 4B/7A activity, we continued our pharmacological studies on 8-alkoxypurine-2,6-diones selected based on previous in vitro screening.
Methods: Derivatives 17, 31, and 36 were pharmacologically evaluated in vivo using the formalin test and oxaliplatin-induced neuropathic pain: the von Frey and the cold plate tests, and in the carrageenan-induced edema model. Compound 36, which turned out to be the most promising, was further evaluated in the collagen-induced arthritis model.
Current treatment strategies of autoimmune diseases (ADs) display a limited efficacy and cause numerous adverse effects. Phosphodiesterase (PDE)4 and PDE7 inhibitors have been studied recently as a potential treatment of a variety of ADs. In this study, a PK/PD disease progression modeling approach was employed to evaluate effects of a new theophylline derivative, compound , being a strong PDE4 and PDE7 inhibitor.
View Article and Find Full Text PDFAutoimmune hepatitis (AIH) is a life-threatening disorder currently treated with nonspecific immunosuppressive drugs. It is postulated that phosphodiesterase (PDE) inhibitors, as agents exerting anti-inflammatory and immunomodulatory activities, may constitute a possible treatment of autoimmune disorders. This study develops a pharmacokinetic/pharmacodynamic (PK/PD) model to assess the effects of PDE-selective inhibitors, namely, cilostazol (PDE3), rolipram (PDE4), and BRL-50481 (PDE7), in a mouse model of AIH.
View Article and Find Full Text PDFPhosphodiesterase (PDE) inhibitors are currently an extensively studied group of compounds that can bring many benefits in the treatment of various inflammatory and fibrotic diseases, including asthma. Herein, we describe a series of novel N'-phenyl- or N'-benzylbutanamide and N'-arylidenebutanehydrazide derivatives of 8-aminopurine-2,6-dione (27-43) and characterized them as prominent pan-PDE inhibitors. Most of the compounds exhibited antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)-induced murine macrophages RAW264.
View Article and Find Full Text PDF5-HT receptor antagonists constitute a potential group of drugs in the treatment of CNS diseases. The aim of this study was to search for new procognitive and antidepressant drugs among amide derivatives of aminoalkanoic acids with 5-HT receptor antagonistic properties. Thirty-three amides were designed and evaluated for their drug-likeness.
View Article and Find Full Text PDFThis study aimed to assess the efficacy and explore the mechanisms of action of a potent phosphodiesterase (PDE)7A and a moderate PDE4B inhibitor GRMS-55 in a mouse model of autoimmune hepatitis (AIH). The concentrations of GRMS-55 and relevant biomarkers were measured in the serum of BALB/c mice with concanavalin A (ConA)-induced hepatitis administered with GRMS-55 at two dose levels. A semi-mechanistic PK/PD/disease progression model describing the time courses of measured biomarkers was developed.
View Article and Find Full Text PDFBackground: There is currently no drug that slows the process of neurodegeneration or alleviates the cognitive and depressive symptoms in patients with Alzheimer's disease. Due to the increasing number of Alzheimer's patients, there is an urgent need to develop novel drugs with neuroprotective, procognitive, and antidepressant properties.
Objective: The aim of this study was to design, synthesize, and evaluate novel aminoalkanamides with serotonin 5-HT/5-HT receptor affinity and phosphodiesterase (PDE) inhibitory activity as a new approach to combat neurodegeneration and symptoms of Alzheimer's disease.
Herein, we describe the rapid synthesis of a focused library of trisubstituted imidazo[4,5-b]pyridines and imidazo[4,5-c]pyridines from 2,4-dichloro-3-nitropyridine using the combination of solution-phase/solid-phase chemistry as new potential anti-inflammatory agents in the treatment of autoimmune diseases. Structure-activity relationship studies, followed by the structure optimization, provided hit compounds (17 and 28) which inhibited phosphodiesterase 4 (PDE4) with IC values comparable to rolipram and displayed different inhibitory potency against phosphodiesterase 7 (PDE7). Among them, compound 17 showed a beneficial effect in all the studied animal models of inflammatory and autoimmune diseases (concanavalin A-induced hepatitis, lipopolysaccharide-induced endotoxemia, collagen-induced arthritis, and MOG-induced encephalomyelitis).
View Article and Find Full Text PDFA library of novel anilide and benzylamide derivatives of ω-(4-(2-methoxyphenyl)piperazin-1-yl)alkanoic acids as combined 5-HT/5-HT receptor ligands and phosphodiesterase PDE4B/PDE7A inhibitors was designed using a structure-based drug design approach. The in vitro studies of 33 newly synthesized compounds (7-39) allowed us to identify 22 as the most promising multifunctional 5-HT/5-HT receptor antagonist (5-HTK = 8 nM, K = 0.04 nM; 5-HTK = 451 nM, K = 460 nM) with PDE4B/PDE7A inhibitory activity (PDE4B IC = 80.
View Article and Find Full Text PDFPhosphodiesterase (PDE) inhibitors are currently a widespread and extensively studied group of anti-inflammatory and anti-fibrotic compounds which may find use in the treatment of numerous lung diseases, including asthma and chronic obstructive pulmonary disease. Several PDE inhibitors are currently in clinical development, and some of them, e.g.
View Article and Find Full Text PDFThere was a mistake in the unit of clearance (Cl) in Table II. In addition, the descriptions of V and V were imprecise and the reference number in the footnote below this table should be (9). The corrected Table appears below.
View Article and Find Full Text PDFPurpose: This study aimed to assess the activity of two phosphodiesterase (PDE) inhibitors, namely GRMS-55 and racemic lisofylline ((±)-LSF)) in vitro and in animal models of immune-mediated disorders.
Methods: Inhibition of human recombinant (hr)PDEs and TNF-alpha release from LPS-stimulated whole rat blood by the studied compounds were assessed in vitro. LPS-induced endotoxemia, concanavalin A (ConA)-induced hepatitis, and collagen-induced arthritis (CIA) animal models were used for in vivo evaluation.
Airway remodelling (AR) is an important pathological feature of chronic asthma and chronic obstructive pulmonary disease. The etiology of AR is complex and involves both lung structural and immune cells. One of the main contributors to airway remodelling is the airway smooth muscle (ASM), which is thickened by asthma, becomes more contractile and produces more extracellular matrix.
View Article and Find Full Text PDFSchizophrenia is a debilitating mental disorder with relatively high prevalence (~1%), during which positive manifestations (such as psychotic states) and negative symptoms (e.g., a withdrawal from social life) occur.
View Article and Find Full Text PDF1. Despite the number of favourable properties of lisofylline (LSF), clinical trials on this compound have not yielded the expected results yet. 2.
View Article and Find Full Text PDFA series of novel amide derivatives of 1,3-dimethyl-2,6-dioxopurin-7-yl-alkylcarboxylic acids designed using a structure-based computational approach was synthesized and assayed to evaluate their ability to block human TRPA1 channel and inhibit PDE4B/7A activity. We identified compounds 16 and 27 which showed higher potency against TRPA1 compared to HC-030031. In turn, compound 36 was the most promising multifunctional TRPA1 antagonist and PDE4B/7A dual inhibitor with IC values in the range of that of the reference rolipram and BRL-50481, respectively.
View Article and Find Full Text PDFPhosphodiesterase 10A (PDE10A) is a double substrate enzyme that hydrolyzes second messenger molecules such as cyclic-3',5'-adenosine monophosphate (cAMP) and cyclic-3',5'-guanosine monophosphate (cGMP). Through this process, PDE10A controls intracellular signaling pathways in the mammalian brain and peripheral tissues. Pharmacological, biochemical, and anatomical data suggest that disorders in the second messenger system mediated by PDE10A may contribute to impairments in the central nervous system (CNS) function, including cognitive deficits as well as disturbances of behavior, emotion processing, and movement.
View Article and Find Full Text PDFA novel butanehydrazide derivatives of purine-2,6-dione designed using a ligand-based approach were synthesized and their in vitro activity against both PDE4B and PDE7A isoenzymes was assessed. The 7,8-disubstituted purine-2,6-dione derivatives 31, 34, 37, and 40 appeared to be the most potent PDE4/7 inhibitors with IC values in the range of that of the reference rolipram and BRL-50481, respectively. Moreover, docking studies explained the importance of N-(2,3,4-trihydroxybenzylidene)butanehydrazide substituent in position 7 of purine-2,6-dione core for dual PDE4/7 inhibitory properties.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
October 2017
In recent years, phosphodiesterase (PDE) inhibitors have been frequently tested for the treatment of experimental inflammatory and immune disorders. It is suggested that anti-inflammatory properties of PDE inhibitors are related to their ability to increase cAMP levels. The aim of this study was to verify the hypothesis that cAMP may be a useful marker of pharmacological response following administration of non-selective PDE inhibitors (pentoxifylline and (±)-lisofylline) to endotoxemic rats.
View Article and Find Full Text PDF