We report on the experimental investigation of the ultrafast dynamics of valley-polarized excitons in monolayer WSe2 using transient reflection spectroscopy with few-cycle laser pulses with 7 fs duration. We observe that at room temperature, the anisotropic valley population of excitons decays on two different timescales. The shorter decay time of approximately 120 fs is related to the initial hot exciton relaxation related to the fast direct recombination of excitons from the radiative zone, while the slower picosecond dynamics corresponds to valley depolarization induced by Coloumb exchange-driven transitions of excitons between two inequivalent valleys.
View Article and Find Full Text PDFHybrid layered materials assembled from atomically thin crystals and small molecules bring great promises in pushing the current information and quantum technologies beyond the frontiers. We demonstrate here a class of layered valley-spin hybrid (VSH) materials composed of a monolayer two-dimensional (2D) semiconductor and double-decker single molecule magnets (SMMs). We have materialized a VSH prototype by thermal evaporation of terbium bis-phthalocyanine onto a MoS monolayer and revealed its composition and stability by both microscopic and spectroscopic probes.
View Article and Find Full Text PDFThe spectral signatures associated with different negatively charged exciton complexes (trions) in a WS2 monolayer encapsulated in hBN are analyzed from low temperature and polarization resolved reflectance contrast (RC) and photoluminescence (PL) experiments, with an applied magnetic field. Based on results obtained from the RC experiment, we show that the valley Zeeman effect affects the optical response of both the singlet and the triplet trion species through the evolution of their energy and of their relative intensity, when applying an external magnetic field. Our analysis allows us to estimate a free electron concentration of ∼1.
View Article and Find Full Text PDFWe present a comprehensive optical study of thin flakes of tungsten disulfide (WS) with thickness ranging from mono- to octalayer and in the bulk limit. It is shown that the optical band-gap absorption of monolayer WS is governed by competing resonances arising from one neutral and two distinct negatively charged excitons whose contributions to the overall absorption of light vary as a function of temperature and carrier concentration. The photoluminescence response of monolayer WS is found to be largely dominated by disorder/impurity- and/or phonon-assisted recombination processes.
View Article and Find Full Text PDF