In this work we study the mechanisms of laser radiation interaction with elementary semiconductors such as Si and Ge and their solid solution SiGe. As a result of this investigation, the mechanisms of nanocones and microcones formation on a surface of semiconductor were proposed. We have shown the possibility to control the size and the shape of cones both by the laser.
View Article and Find Full Text PDFThe investigation of surface morphology using atomic force microscope has shown self-organizing of the nanocones on the surface of CdZnTe crystal after irradiation by strongly absorbed Nd:YAG laser irradiation at an intensity of 12.0 MW/cm2. The formation of nanocones is explained by the presence of a thermogradient effect in the semiconductor.
View Article and Find Full Text PDFIn this work, we study the mechanism of nanocone formation on a surface of elementary semiconductors by Nd:YAG laser radiation. Our previous investigations of SiGe and CdZnTe solid solutions have shown that nanocone formation mechanism is characterized by two stages. The first stage is characterized by formation of heterostructure, for example, Ge/Si heterostructure from SiGe solid solutions, and the second stage is characterized by formation of nanocones by mechanical plastic deformation of the compressed Ge layer on Si due to mismatch of Si and Ge crystalline lattices.
View Article and Find Full Text PDFOn the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation.
View Article and Find Full Text PDF