The features of the wide band gap SiC semiconductor use in the capacitive MOSFE sensors' structure in terms of the hydrogen gas sensitivity effect, the response speed, and the measuring signals' optimal parameters are studied. Sensors in a high-temperature ceramic housing with the Me/TaO/SiC/4H-SiC structures and two types of gas-sensitive electrodes were made: Palladium and Platinum. The effectiveness of using Platinum as an alternative to Palladium in the MOSFE-Capacitor (MOSFEC) gas sensors' high-temperature design is evaluated.
View Article and Find Full Text PDFThe influence of structure and technological parameters (STPs) on the metrological characteristics of hydrogen sensors based on MISFETs has been investigated. Compact electrophysical and electrical models connecting the drain current, the voltage between the drain and the source and the voltage between the gate and the substrate with the technological parameters of the -channel MISFET as a sensitive element of the hydrogen sensor are proposed in a general form. Unlike the majority of works, in which the hydrogen sensitivity of only the threshold voltage of the MISFET is investigated, the proposed models allow us to simulate the hydrogen sensitivity of gate voltages or drain currents in weak and strong inversion modes, taking into account changes in the MIS structure charges.
View Article and Find Full Text PDFThe technological approach for the low-scale production of field-effect gas sensors as electronic components for use in non-lab ambient environments is described. In this work, in addition to the mechanical protection of a gas-sensitive structure, an emphasis was also placed on the very topical issue of thermal stabilization around the one temperature point, even if it is several degrees higher than the surrounding one, which will probably also be useful for any type of application for many types of field-effect sensors. Considerable attention was paid to the characterization of the results obtained by various invasive and non-invasive methods for diagnosing the manufactured construction.
View Article and Find Full Text PDFA prototype of a nitro compound vapor and trace detector, which uses the pyrolysis method and a capacitive gas sensor based on the metal-insulator-semiconductor (MIS) structure type Pd-SiO-Si, was developed and manufactured. It was experimentally established that the detection limit of trinitrotoluene trace for the detector prototype is 1 × 10 g, which corresponds to concentration from 10 g/cm to 10 g/cm. The prototype had a response time of no more than 30 s.
View Article and Find Full Text PDF