(51)Cr-labeled, superparamagnetic, iron oxide nanoparticles ((51)Cr-SPIOs) and (65)Zn-labeled CdSe/CdS/ZnS-quantum dots ((65)Zn-Qdots) were prepared using an easy, on demand, exchange-labeling technique and their particokinetic parameters were studied in mice after intravenous injection. The results indicate that the application of these heterologous isotopes can be used to successfully mark the nanoparticles during initial distribution and organ uptake, although the (65)Zn-label appeared not to be fully stable. As the degradation of the nanoparticles takes place, the individual transport mechanisms for the different isotopes must be carefully taken into account.
View Article and Find Full Text PDFSemiconductor quantum dots (QD) and superparamagnetic iron oxide nanocrystals (SPIO) have exceptional physical properties that are well suited for biomedical applications in vitro and in vivo. For future applications, the direct injection of nanocrystals for imaging and therapy represents an important entry route into the human body. Therefore, it is crucial to investigate biological responses of the body to nanocrystals to avoid harmful side effects.
View Article and Find Full Text PDFA simple, fast, efficient, and widely applicable method to radiolabel the cores of monodisperse superparamagnetic iron oxide nanoparticles (SPIOs) with (59)Fe was developed. These cores can be used as precursors for a variety of functionalized nanodevices. A quality control using filtration techniques, size-exclusion chromatography, chemical degradation methods, transmission electron microscopy, and magnetic resonance imaging showed that the nanoparticles were stably labeled with (59)Fe.
View Article and Find Full Text PDF