Publications by authors named "Artur Gieldon"

Peroxisomal protein import has been identified as a valid target in trypanosomiases, an important health threat in Central and South America. The importomer is built of multiple peroxins (Pex) and structural characterization of these proteins facilitates rational inhibitor development. We report crystal structures of the Trypanosoma brucei and T.

View Article and Find Full Text PDF

is a bacterium that colonizes the gastric epithelium, which affects millions of people worldwide. infection can lead to various gastrointestinal diseases, including gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. Conventional antibiotic therapies face challenges due to increasing antibiotic resistance and patient non-compliance, necessitating the exploration of alternative treatment approaches.

View Article and Find Full Text PDF

The SARS-CoV-2 virus, commonly known as COVID-19, occurred in 2019. It is a highly contagious illness with effects ranging from mild symptoms to severe illness. It is also one of the best-known pathogens since more than 200,000 scientific papers occurred in the last few years.

View Article and Find Full Text PDF

We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target.

View Article and Find Full Text PDF

Pharmacotherapy for inflammatory bowel disease (IBD) is difficult, and some patients do not respond to currently available treatments. Therefore, the discovery of novel anti-IBD agents is imperative. Our aim was the synthesis of lipidated analogs of sialorphin and the in vitro characterization of their effect on the degradation of Met-enkephalin by neutral endopeptidase (NEP).

View Article and Find Full Text PDF

This work reports detailed characteristics of the antimicrobial peptide Intestinalin (P30), which is derived from the LysC enzyme of Clostridium intestinale strain URNW. The peptide shows a broader antibacterial spectrum than the parental enzyme, showing potent antimicrobial activity against clinical strains of Gram-positive staphylococci and Gram-negative pathogens and causing between 3.04 ± 0.

View Article and Find Full Text PDF

Pyrazine and its derivatives are a large group of compounds that exhibit broad biological activity, the changes of which can be easily detected by a substituent effect or a change in the functional group. The present studies combined theoretical research with the density functional theory (DFT) approach (B3LYP/6-311+G**) and experimental (potentiometric and spectrophotometric) analysis for a thorough understanding of the structure of chlorohydrazinopyrazine, its physicochemical and cytotoxic properties, and the site and nature of interaction with DNA. The obtained results indicated that 2-chloro-3-hydrazinopyrazine (2Cl3HP) displayed the highest affinity to DNA.

View Article and Find Full Text PDF

Degradation of misfolded, redundant and oxidatively damaged proteins constitutes one of the cellular processes which are influenced by the 20S proteasome. However, its activity is generally thought to decrease with age which leads to the gradual accumulation of abnormal proteins in cells and their subsequent aggregation. Therefore, increasing proteasomal degradation constitutes a promising strategy to delay the onset of various age-related diseases, including neurodegenerative disorders.

View Article and Find Full Text PDF

The SARS-CoV-2 virus, commonly known as COVID-19, first occurred in December 2019 in Wuhan, Hubei Province, China. Since then, it has become a tremendous threat to human health. With a pandemic threat, it is in the significant interest of the scientific world to establish its method of infection.

View Article and Find Full Text PDF

One of the definitions of hydrophobic interactions is the aggregation of nonpolar particles in a polar solvent, such as water. While this phenomenon appears to be very simple, it is crucial for many complex processes, such as protein folding, to take place. In this work, the hydrophobic association of adamantane and hexane at various temperatures and ionic strengths was studied using molecular dynamics simulations with the AMBER 16.

View Article and Find Full Text PDF

Epidemiological studies established an association between chronic inflammation and higher risk of cancer. Inhibition of proteolytic enzymes represents a potential treatment strategy for cancer and prevention of cancer metastasis. Cathepsin C (CatC) is a highly conserved lysosomal cysteine dipeptidyl aminopeptidase required for the activation of pro-inflammatory neutrophil serine proteases (NSPs, elastase, proteinase 3, cathepsin G and NSP-4).

View Article and Find Full Text PDF

We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers).

View Article and Find Full Text PDF

The UNited RESidue (UNRES) force field was tested in the 14th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP14), in which larger oligomeric and multimeric targets were present compared to previous editions. Three prediction modes were tested (i) ab initio (the UNRES group), (ii) contact-assisted (the UNRES-contact group), and (iii) template-assisted (the UNRES-template group). For most of the targets, the contact restraints were derived from the server models top-ranked by the DeepQA method, while the DNCON2 method was used for 11 targets.

View Article and Find Full Text PDF

This work describes the chemical synthesis, combinatorial selection, and enzymatic evaluation of peptidomimetic fluorescent substrates specific for the trypsin-like (β2) subunit of the 20S human proteasome. After deconvolution of a library comprising nearly 6000 compounds composed of peg substituted diaminopropionic acid DAPEG building blocks, the sequence ABZ-Dap(O2(Cbz))-Dap(GO1)-Dap(O2(Cbz))-Arg-ANB-NH, where ABZ is 2-aminobenzoic acid, and ANB- 5 amino 2- nitro benzoic acid was selected. Its cleavage followed sigmoidal kinetics, characteristic for allosteric enzymes, with = 3.

View Article and Find Full Text PDF

In this chapter the scale-consistent approach to the derivation of coarse-grained force fields developed in our laboratory is presented, in which the effective energy function originates from the potential of mean force of the system under consideration and embeds atomistically detailed interactions in the resulting energy terms through use of Kubo's cluster-cumulant expansion, appropriate selection of the major degrees of freedom to be averaged out in the derivation of analytical approximations to the energy terms, and appropriate expression of the interaction energies at the all-atom level in these degrees of freedom. Our approach enables the developers to find correct functional forms of the effective coarse-grained energy terms, without having to import them from all-atom force fields or deriving them on a heuristic basis. In particular, the energy terms derived in such a way exhibit correct dependence on coarse-grained geometry, in particular on site orientation.

View Article and Find Full Text PDF

The method for protein-structure prediction, which combines the physics-based coarse-grained UNRES force field with knowledge-based modeling, has been developed further and tested in the 13th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP13). The method implements restraints from the consensus fragments common to server models. In this work, the server models to derive fragments have been chosen on the basis of quality assessment; a fully automatic fragment-selection procedure has been introduced, and Dynamic Fragment Assembly pseudopotentials have been fully implemented.

View Article and Find Full Text PDF
Article Synopsis
  • - Cysteine cathepsin C (CatC) is an important enzyme that helps activate other immune-related proteins by processing inactive forms (zymogens) into active ones, playing a key role in immune response.
  • - CatC starts as an inactive form with a propeptide that aids in forming its active structure, which involves dimerization and further processing into a functional tetramer.
  • - A specific mutation (Leu172Pro) in the propeptide region affects the stability and maturation of proCatC, linking it to certain genetic syndromes (Papillon-Lefèvre and Haim-Munk syndrome).
View Article and Find Full Text PDF

The recent NEWCT-9P version of the coarse-grained UNRES force field for proteins, with scale-consistent formulas for the local and correlation terms, has been tested in the CASP13 experiment of the blind-prediction of protein structure, in the ab initio, contact-assisted, and data-assisted modes. Significant improvement of the performance has been observed with respect to the CASP11 and CASP12 experiments (by over 10 GDT_TS units for the ab initio mode predictions and by over 15 GDT_TS units for the contact-assisted prediction, respectively), which is a result of introducing scale-consistent terms and improved handling of contact-distance restraints. As in previous CASP exercises, UNRES ranked higher in the free modeling category than in the general category that included template based modeling targets.

View Article and Find Full Text PDF

Rat sialorphin (Gln-His-Asn-Pro-Arg) is a natural blocker of neprilysin (NEP) that belongs to the family of endogenous opioid peptide-degrading enzymes. Studies have confirmed the efficiency of sialorphin in blocking the activity of NEP, both in vitro and in vivo. It has been demonstrated that this inhibitor has a strong analgesic, anti-inflammatory, immunological and metabolic effect either directly or indirectly by affecting the level of Met/Leu-enkephalins.

View Article and Find Full Text PDF

Phosphorylated proteins take part in many signaling pathways and play a key role in homeostasis regulation. The all-atom force fields enable us to study the systems containing phosphorylated proteins, but they are limited to short time scales. In this paper, we report the extension of the physics-based coarse-grained UNRES force field to treat systems with phosphorylated amino-acid residues.

View Article and Find Full Text PDF

Cathepsin C (CatC) is a dipeptidyl-exopeptidase which activates neutrophil serine protease precursors (elastase, proteinase 3, cathepsin G and NSP4) by removing their N-terminal propeptide in bone marrow cells at the promyelocytic stage of neutrophil differentiation. The resulting active proteases are implicated in chronic inflammatory and autoimmune diseases. Hence, inhibition of CatC represents a therapeutic strategy to suppress excessive protease activities in various neutrophil mediated diseases.

View Article and Find Full Text PDF

Based on the coarse-grained UNRES and NARES-2P models of proteins and nucleic acids, respectively, developed in our laboratory, in this work we have developed a coarse-grained model of systems containing proteins and nucleic acids. The UNRES and NARES-2P effective energy functions have been applied to the protein and nucleic-acid components of a system, respectively, while protein-nucleic-acid interactions have been described by the respective coarse-grained potentials developed in our recent work (Yin et al., J.

View Article and Find Full Text PDF

Every two years groups worldwide participate in the Critical Assessment of Protein Structure Prediction (CASP) experiment to blindly test the strengths and weaknesses of their computational methods. CASP has significantly advanced the field but many hurdles still remain, which may require new ideas and collaborations. In 2012 a web-based effort called WeFold, was initiated to promote collaboration within the CASP community and attract researchers from other fields to contribute new ideas to CASP.

View Article and Find Full Text PDF

Knowledge-based methods are, at present, the most effective ones for the prediction of protein structures; however, their results heavily depend on the similarity of a target sequence to those of proteins with known structures. On the other hand, the physics-based methods, although still less accurate and more expensive to execute, are independent of databases and give reasonable results where the knowledge-based methods fail because of weak sequence similarity. Therefore, a plausible approach seems to be the use of knowledge-based methods to determine the sections of the structures that correspond to sufficient sequence similarity and physics-based methods to determine the remaining structure.

View Article and Find Full Text PDF

Enkephalins are involved in a number of physiological processes. However, these peptides are quickly degraded by peptidases, e.g.

View Article and Find Full Text PDF