Chromosomal microarray analysis (CMA) is typically performed for investigation of autism using blood DNA. However, blood collection poses significant challenges for autistic children with repetitive behaviors and sensory and communication issues, often necessitating physical restraint or sedation. Noninvasive saliva collection offers an alternative, however, no published studies to date have evaluated saliva DNA for CMA in autism.
View Article and Find Full Text PDFSingle nucleotide polymorphism (SNP) chromosome microarray is well established for investigation of children with intellectual deficit/development delay and prenatal diagnosis of fetal malformation but has also emerged for uniparental disomy (UPD) genotyping. Despite published guidelines on clinical indications for testing there are no laboratory guidelines published for performing SNP microarray UPD genotyping. We evaluated SNP microarray UPD genotyping using Illumina beadchips on family trios/duos within a clinical cohort (n=98) and then explored our findings in a post-study audit (n=123).
View Article and Find Full Text PDFBackground: amplification (MNA), segmental chromosomal aberrations (SCA) and activating mutations are biomarkers for risk-group stratification and for targeted therapeutics for neuroblastoma, both of which are currently assessed on tissue biopsy. Increase in demand for tumor genetic testing for neuroblastoma diagnosis is posing a challenge to current practice, as the small size of the core needle biopsies obtained are required for multiple molecular tests. We evaluated the utility of detecting these biomarkers in the circulation.
View Article and Find Full Text PDFAim: Validation of a chromosomal microarray for improved prenatal diagnosis for chromosomal abnormalities among high-risk pregnancies.
Methods: A cohort of 213 pregnancies was investigated by chromosomal microarray and the results were compared with quantitative fluorescent polymerase chain reaction (QF-PCR), karyotype, and 850K single-nucleotide polymorphism microarray results. The detection limit of mosaicism was determined by assaying different trisomy mosaic constructs down to ∼12%.
Rett syndrome is a clinically defined neurodevelopmental disorder almost exclusively affecting females. Usually sporadic, Rett syndrome is caused by mutations in the X-linked MECP2 gene in ∼90-95% of classic cases and 40-60% of individuals with atypical Rett syndrome. Mutations in the CDKL5 gene have been associated with the early-onset seizure variant of Rett syndrome and mutations in FOXG1 have been associated with the congenital Rett syndrome variant.
View Article and Find Full Text PDFRett syndrome (RTT) is a severe neurodevelopmental disorder affecting females almost exclusively and is characterized by a wide spectrum of clinical manifestations. Mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene have been found in up to 95% of classical RTT cases and a lesser proportion of atypical cases. Recently, mutations in another X-linked gene, CDKL5 (cyclin-dependent kinase-like 5) have been found to cause atypical RTT, in particular the early onset seizure (Hanefeld variant) and one female with autism.
View Article and Find Full Text PDFA boy with autistic spectrum disorder without dysmorphisms was found to have a chromosome duplication of part of band 13q21. His mother and grandfather both of normal intellect had the same chromosomal duplication. Comparison was made with the Chromosome anomaly database www.
View Article and Find Full Text PDFLoss of imprinting at insulin-like growth factor II (IGFII), in association with H19 silencing, has been described previously in a subgroup of Beckwith-Wiedemann syndrome (BWS) patients who have an elevated risk for Wilms' tumor. An equivalent somatic mutation occurs in sporadic Wilms' tumor. We describe a family with overgrowth in three generations and Wilms' tumor in two generations, with paternal inheritance of a cis-duplication at 11p15.
View Article and Find Full Text PDFObjectives: To add to the knowledge of fetal mosaicism, confined placental mosaicism (CPM), and uniparental disomy (UPD), in rare trisomies detected at prenatal diagnosis.
Methods: The origin of rare trisomy mosaics, mostly (8/11) seen in amniocytes, was examined in 11 cases by follow-up karyotyping and the study of microsatellite inheritance.
Results: Of the rare trisomies presented, three were mosaic trisomy 16 (two of which were CPM), and the remainder comprised single cases of mosaic trisomies of 8, 9, 10, 11, 12, 14, 5 and 15--the last two being CPM.
Four apparent triploid/diploid mosaic cases were studied. Three of the cases were detected at prenatal diagnosis and the other was of an intellectually handicapped, dysmorphic boy. Karyotypes were performed in multiple tissues if possible, and the inheritance of microsatellites was studied with DNA from fetal tissues and parental blood.
View Article and Find Full Text PDFTwo cases of submicroscopic recombinants of intrachromosomal transposition of telomeres, one each from chromosome 1 and 2 are described. Meiotic crossing-over would generate the recombinants from these reciprocal rearrangements. In both cases, which were detected by FISH with subtelomeric probes, there is a minute deletion of the qter region and a second presence of the pter subtelomeric region on the respective qter, i.
View Article and Find Full Text PDF