Publications by authors named "Artur Camposo Pereira"

The main modifications of thermal and colorimetric parameters after thermal aging of DGEBA/TETA system (plain epoxy) and fique-fiber woven fabric-reinforced epoxy composites are described. As a preliminary study, thermal analysis was carried out on epoxy matrix composites reinforced with 15, 30, 40 and 50% fique-fiber woven fabric. After this previous analysis, the 40% composite was chosen to be thermally aged, at 170 °C.

View Article and Find Full Text PDF

Hybrid composites are expanding applications in cutting-edge technology industries, which need materials capable of meeting combined properties in order to guarantee high performance and cost-effectiveness. This original article aimed for the first time to investigate the hybrid laminated composite thermal behavior, made of two types of fibers: synthetic Twaron fabric and natural curaua non-woven mat, reinforcing epoxy matrix. The composite processing was based on the ballistic helmets methodology from the North American Personal Armor System for Ground Troops, currently used by the Brazilian Army, aiming at reduced costs, total weight, and environmental impact associated with the material without compromising ballistic performance.

View Article and Find Full Text PDF

Natural fibers have some advantages in comparison to synthetic fibers, especially because they are more environmentally friendly. For this reason, using them as a reinforcement for polymeric matrices is growing exponentially. However, they present the disadvantage of having the hydrophilic nature, which strongly reduces the interface interaction.

View Article and Find Full Text PDF

The growing concern about the limitation of non-renewable resources has brought a focus on the development of environmentally sustainable and biodegradable composite materials. In this context, a trend in the development of natural fibers used as a reinforcement in composites is ever-increasing. In this work, for the first-time, fibers extracted from the seven-islands-sedge plant () have been characterized by X-ray diffraction (XRD) to calculate the crystallinity index and the microfibrillar angle (MFA).

View Article and Find Full Text PDF

Basic properties of sedge fibers from the seven-islands-sedge plant () were investigated with possible application in reinforcing composite materials. A dimensional distribution and the effect of fiber diameter on density were investigated using gas pycnometry. The Weibull method, used to statistically analyze the acquired data from the diameter intervals, indicated an inverse dependence, where the thinnest fibers had the highest density values.

View Article and Find Full Text PDF

Fiber-reinforced composites are among the most investigated and industrially applied materials. Many studies on these composites using fibers, especially with natural fibers, were made in response to an urgent action for ambient preservation. A particularly relevant situation exists nowadays in the area of materials durability.

View Article and Find Full Text PDF

Natural lignocellulosic fibers (NLFs) have been extensively investigated and applied as reinforcements for polymers composites owing to improved properties associated with their cost-effectiveness and their sustainable characteristics as compared to synthetic fibers. However, an intrinsic difficulty of the hydrophilic NFL adhesion to a hydrophobic polymer matrix is still a major limitation, which might be overcome via fiber surface treatments. Among the less-known NLFs, sponge gourd ) is a promising reinforcement for polymer composites owing to its natural network of intertwined fibers.

View Article and Find Full Text PDF

Dynamic mechanical analysis (DMA) is one of the most common methods employed to study a material's viscoelastic properties. The effect of thermal aging on plain epoxy and a fique fabric-reinforced epoxy composite was investigated by comparing the mass loss, morphologies, and DMA properties of aged and unaged samples. In fact, thermal aging presents a big challenge for the high-temperature applications of natural fiber composites.

View Article and Find Full Text PDF

Natural lignocellulose fibers have been extensively investigated and applied as a reinforcement of polymer composites in industrial applications from food packing to automotive parts. Among the advantages of natural fibers stands their relatively low cost and sustainable characteristics. These are accentuated in the case of residual fibers such as those obtained from coffee husks, an agribusiness waste, usually burnt or disposed into the environment.

View Article and Find Full Text PDF

The coating of natural fiber by graphene oxide (GO) has, over, this past decade, attracted increasing attention as an effective way to improve the adhesion to polymer matrices and enhance the composite properties. In particular, the GO-functionalized 30 vol% curaua fiber () reinforcing epoxy composite was found to display superior tensile and thermogravimetric properties as well as higher fiber/matrix interfacial shear strength. In this brief report, dynamic mechanical analysis (DMA) was conducted in up to 50 vol% GO-functionalized curaua fiber reinforced epoxy matrix (EM) composites.

View Article and Find Full Text PDF

In a recent paper, novel polyester nanocomposites reinforced with up to 3 wt% of cellulose nanocrystals (CNCs) extracted from conifer fiber were characterized for their crystallinity index, water absorption, and flexural and thermal resistance. The use of this novel class of nanocomposites as a possible substitute for conventional glass fiber composites (fiberglass) was then suggested, especially for the 1 and 2 wt% CNC composites due to promising bending, density, and water absorption results. However, for effective engineering applications requiring impact and tensile performance, the corresponding properties need to be evaluated.

View Article and Find Full Text PDF

The application of cellulose nanocrystal has lately been investigated as polymer composites reinforcement owing to favorable characteristics of biodegradability and cost effectiveness as well as superior mechanical properties. In the present work novel nanocomposites of unsaturated polyester matrix reinforced with low amount of 1, 2, and 3 wt% of cellulose nanocrystals obtained from conifer fiber (CNC) were characterized. The polyester matrix and nanocomposites were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), bending test, and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Graphene oxide (GO) incorporation in natural fiber composites has recently defined a novel class of materials with enhanced properties for applications, including ballistic armors. In the present work, the performance of a 0.5 vol % GO-incorporated epoxy matrix composite reinforced with 30 vol % fabric made of ramie fibers was investigated by stand-alone ballistic tests against the threat of a 0.

View Article and Find Full Text PDF

The replacement of synthetic fibers by natural fibers has, in recent decades, been the subject of intense research, particularly as reinforcement of composites. In this work, the lesser known tucum fiber, extracted from the leaves of the Amazon palm tree, is investigated as a possible novel reinforcement of epoxy composites. The tucum fiber was characterized by pullout test for interfacial adhesion with epoxy matrix.

View Article and Find Full Text PDF

A relatively unknown natural fiber extracted from the leaves of the fique plant, native of the South American Andes, has recently shown potential as reinforcement of polymer composites for engineering applications. Preliminary investigations indicated a promising substitute for synthetic fibers, competing with other well-known natural fibers. The fabric made from fique fibers have not yet been investigated as possible composite reinforcement.

View Article and Find Full Text PDF

The ballistic performance of plain woven jute fabric-reinforced polyester matrix composites was investigated as the second layer in a multilayered armor system (MAS). Volume fractions of jute fabric, up to 30 vol %, were mixed with orthophthalic polyester to fabricate laminate composites. Ballistic tests were conducted using high velocity 7.

View Article and Find Full Text PDF