Unlabelled: Limb amputation results in such devastating consequences as loss of motor and sensory functions and phantom limb pain (PLP). Neurostimulation-based approaches have been developed to treat this condition, which provide artificial somatosensory feedback such as peripheral nerve stimulation (PNS), spinal cord stimulation (SCS), and transcutaneous electrical nerve stimulation (TENS). Yet, the effectiveness of different neurostimulation methods has been rarely tested in the same participants.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) is a common neurodegenerative disease characterized by rest tremor, rigidity, and bradykinesia. Assessing the severity of these symptoms is typically done using the third part of the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS III), relying on subjective evaluations by neurologists, which may lead to challenges in result interpretation. To address this issue, incorporation of surface electromyography (sEMG) in diagnostics.
View Article and Find Full Text PDFPhantom limb pain (PLP) is a distressing and persistent sensation that occurs after the amputation of a limb. While medication-based treatments have limitations and adverse effects, neurostimulation is a promising alternative approach whose mechanism of action needs research, including electroencephalographic (EEG) recordings for the assessment of cortical manifestation of PLP relieving effects. Here we collected and analyzed high-density EEG data in 3 patients (P01, P02, and P03).
View Article and Find Full Text PDFMayo Clin Proc Innov Qual Outcomes
February 2024
Objective: To evaluate the effect of transcutaneous (tSCS) and epidural electrical spinal cord stimulation (EES) in facilitating volitional movements, balance, and nonmotor functions, in this observational study, tSCS and EES were consecutively tested in 2 participants with motor complete spinal cord injury (SCI).
Participants And Methods: Two participants (a 48-year-old woman and a 28-year-old man), both classified as motor complete spinal injury, were enrolled in the study. Both participants went through a unified protocol, such as an initial electrophysiological assessment of neural connectivity, consecutive tSCS and EES combined with 8 wks of motor training with electromyography (EMG) and kinematic evaluation.
Rationale: Spasticity develops in 80% of spinal cord injury cases and negatively affects the patents' quality of life. The most common method of surgical treatment for severe spasticity is a long-term intrathecal baclofen therapy (ITB). Long-term spinal cord stimulation is another possible treatment technique.
View Article and Find Full Text PDFTo simultaneously treat phantom limb pain (PLP) and restore somatic sensations using peripheral nerve stimulation (PNS), two bilateral transradial amputees were implanted with stimulating electrodes in the proximity of the medial, ulnar and radial nerves. Application of PNS evoked tactile and proprioceptive sensations in the phantom hand. Both patients learned to determine the shape of invisible objects by scanning a computer tablet with a stylus while receiving feedback based on PNS or transcutaneous electrical nerve stimulation (TENS).
View Article and Find Full Text PDFSpinal cord injury (SCI) is one of the most challenging medical issues. Spasticity is a major complication of SCI. A combination of spinal cord stimulation, new methods of neuroprotection and biomedical cellular products provides fundamentally new options for SCI treatment and rehabilitation.
View Article and Find Full Text PDFRationale: Spasticity is one of the main complications after the spinal cord injury (SCI). Most commonly, severe cases of spasticity are treated surgically with intrathecal baclofen therapy (ITB). Spinal cord stimulation for chronic pains (SCS) serves as an alternative for ITB.
View Article and Find Full Text PDF