Coenzyme Q10 (CoQ) is a ubiquitous lipid with different biological functions. In blood, there is a close relationship between CoQ status and cholesterol, which strongly supports the study of both molecules simultaneously. The objective of this study was to evaluate plasma CoQ, lipoprotein concentrations and CoQ/Chol ratio in a cohort of paediatric patients with different types of dyslipidaemias.
View Article and Find Full Text PDFThe protein encoded by COQ7 is required for CoQ synthesis in humans, hydroxylating 3-demethoxyubiquinol (DMQ) in the second to last steps of the pathway. COQ7 mutations lead to a primary CoQ deficiency syndrome associated with a pleiotropic neurological disorder. This study shows the clinical, physiological, and molecular characterization of four new cases of CoQ primary deficiency caused by five mutations in COQ7, three of which have not yet been described, inducing mitochondrial dysfunction in all patients.
View Article and Find Full Text PDFBackground: Most patients suffering from Leber hereditary optic neuropathy carry one of the three classic pathologic mutations, but not all individuals with these genetic alterations develop the disease. There are different risk factors that modify the penetrance of these mutations. The remaining patients carry one of a set of very rare genetic variants and, it appears that, some of the risk factors that modify the penetrance of the classical pathologic mutations may also affect the phenotype of these other rare mutations.
View Article and Find Full Text PDFRecent cryoEM studies elucidated details of the structural basis for the substrate selectivity and translocation of heteromeric amino acid transporters. However, Asc1/CD98hc is the only neutral heteromeric amino acid transporter that can function through facilitated diffusion, and the only one that efficiently transports glycine and D-serine, and thus has a regulatory role in the central nervous system. Here we use cryoEM, ligand-binding simulations, mutagenesis, transport assays, and molecular dynamics to define human Asc1/CD98hc determinants for substrate specificity and gain insights into the mechanisms that govern substrate translocation by exchange and facilitated diffusion.
View Article and Find Full Text PDFObjectives: Early diagnosis of inborn errors of metabolism (IEM) is crucial to ensure early detection of conditions which are treatable. This study reports on targeted metabolomic procedures for the diagnosis of IEM of amino acids, acylcarnitines, creatine/guanidinoacetate, purines/pyrimidines and oligosaccharides, and describes its validation through external quality assessment schemes (EQA).
Methods: Analysis was performed on a Waters ACQUITY UPLC H-class system coupled to a Waters Xevo triple-quadrupole (TQD) mass spectrometer, operating in both positive and negative electrospray ionization mode.
functions as a master regulator of thousands of genes, exerting a pleiotropic effect on numerous neurodevelopmental and psychiatric disorders. A potential mechanism by which may impact these disorders is through its modulation of serotonergic neurotransmission, a common target for pharmacological intervention in psychiatric conditions linked to . However, the precise effects of on the serotonergic system remain largely unexplored.
View Article and Find Full Text PDFGEMIN5 exerts key biological functions regulating pre-mRNAs intron removal to generate mature mRNAs. A series of patients were reported harboring mutations in GEMIN5. No treatments are currently available for this disease.
View Article and Find Full Text PDFMore than 20 years have passed since the identification of and as causative genes for cystinuria. However, cystinuria patients exhibit significant variability in the age of lithiasis onset, recurrence, and response to treatment, suggesting the presence of modulatory factors influencing cystinuria severity. In 2016, a second renal cystine transporter, AGT1, encoded by the gene, was discovered.
View Article and Find Full Text PDFThe study of inborn errors of neurotransmission has been mostly focused on monoamine disorders, GABAergic and glycinergic defects. The study of the glutamatergic synapse using the same approach than classic neurotransmitter disorders is challenging due to the lack of biomarkers in the CSF. A metabolomic approach can provide both insight into their molecular basis and outline novel therapeutic alternatives.
View Article and Find Full Text PDFSuccinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare neurometabolic disorder caused by disruption of the gamma-aminobutyric acid (GABA) pathway. A more detailed understanding of its pathophysiology, beyond the accumulation of GABA and gamma-hydroxybutyric acid (GHB), will increase our understanding of the disease and may support novel therapy development. To this end, we compared biochemical body fluid profiles from SSADHD patients with controls using next-generation metabolic screening (NGMS).
View Article and Find Full Text PDFThe high recurrence rate of cystine lithiasis observed in cystinuria patients highlights the need for new therapeutic options to address this chronic disease. There is growing evidence of an antioxidant defect in cystinuria, which has led to test antioxidant molecules as new therapeutic approaches. In this study, the antioxidant l-Ergothioneine was evaluated, at two different doses, as a preventive and long-term treatment for cystinuria in the Slc7a9 mouse model.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
July 2023
Metabolomics studies in human dermal fibroblasts can elucidate the biological mechanisms associated with some diseases, but several methodological issues that increase variability have been identified. We aimed to quantify the amino acid levels in cultured fibroblasts and to apply different sample-based normalization approaches. Forty-four skin biopsies from control subjects were collected.
View Article and Find Full Text PDFWilson disease (WD) is a complex disease in which diagnosis and long-term metabolic copper control remains challenging. The absence of accurate biomarkers requires the combination of different parameters to ensure copper homeostasis. Exchangeable copper and its ratio (REC) have been suggested to be useful biomarkers in this setting.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
April 2023
Tyrosine hydroxylase deficiency (THD) is a rare genetic disorder leading to dopaminergic depletion and early-onset Parkinsonism. Affected children present with either a severe form that does not respond to L-Dopa treatment (THD-B) or a milder L-Dopa responsive form (THD-A). We generated induced pluripotent stem cells (iPSCs) from THD patients that were differentiated into dopaminergic neurons (DAn) and compared with control-DAn from healthy individuals and gene-corrected isogenic controls.
View Article and Find Full Text PDFThere are few causes of treatable neurodevelopmental diseases described to date. Branched-chain ketoacid dehydrogenase kinase (BCKDK) deficiency causes branched-chain amino acid (BCAA) depletion and is linked to a neurodevelopmental disorder characterized by autism, intellectual disability and microcephaly. We report the largest cohort of patients studied, broadening the phenotypic and genotypic spectrum.
View Article and Find Full Text PDF