G-protein-coupled receptors (GPCRs) mediate many critical physiological processes. Their spatial organization in plasma membrane (PM) domains is believed to encode signaling specificity and efficiency. However, the existence of domains and, crucially, the mechanism of formation of such putative domains remain elusive.
View Article and Find Full Text PDFHow local interactions of actin regulators yield large-scale organization of cell shape and movement is not well understood. Here we investigate how the WAVE complex organizes sheet-like lamellipodia. Using super-resolution microscopy, we find that the WAVE complex forms actin-independent 230-nm-wide rings that localize to regions of saddle membrane curvature.
View Article and Find Full Text PDFMembrane curvature has recently been recognized as an active regulator of cellular function, with several protein families identified as sensors and generators of membrane curvature. Amongst them, the inverse Bin/Amphiphysin/Rvs (I-BAR) domain family has been implicated in the sensing and generation of membrane structures with negative membrane curvature e.g.
View Article and Find Full Text PDFThe importance of curvature as a structural feature of biological membranes has been recognized for many years and has fascinated scientists from a wide range of different backgrounds. On the one hand, changes in membrane morphology are involved in a plethora of phenomena involving the plasma membrane of eukaryotic cells, including endo- and exocytosis, phagocytosis and filopodia formation. On the other hand, a multitude of intracellular processes at the level of organelles rely on generation, modulation, and maintenance of membrane curvature to maintain the organelle shape and functionality.
View Article and Find Full Text PDF