Publications by authors named "Arto Liljeblad"

Protein properties and interactions have been widely investigated by using external labels. However, the micromolar sensitivity of the current dyes limits their applicability due to the high material consumption and assay cost. In response to this challenge, we synthesized a series of cyanine5 (Cy5) dye-based quencher molecules to develop an external dye technique to probe proteins at the nanomolar protein level in a high-throughput one-step assay format.

View Article and Find Full Text PDF

The enantiomers of aromatic 4-dibenzocyclooctynol (DIBO), used for radiolabeling and subsequent conjugation of biomolecules to form radioligands for positron emission tomography (PET), were separated by kinetic resolution using lipase A from (CAL-A). In optimized conditions, ()-DIBO [()-, ee 95%] and its acetylated ()-ester [()-, ee 96%] were isolated. In silico docking results explained the ability of CAL-A to differentiate the enantiomers of DIBO and to accommodate various acyl donors.

View Article and Find Full Text PDF

, the causative agent of tick-borne Lyme borreliosis (LB), has a limited metabolic capacity and needs to acquire nutrients, such as amino acids, fatty acids, and nucleic acids, from the host environment. Using X-ray crystallography, liquid chromatography-mass spectrometry, microscale thermophoresis, and cellular localization studies, we show that basic membrane protein D (BmpD) is a periplasmic substrate-binding protein of an ABC transporter system binding to purine nucleosides. Nucleosides are essential for bacterial survival in the host organism, and these studies suggest a key role for BmpD in the purine salvage pathway of Because lacks the enzymes required for purine synthesis, BmpD may play a vital role in ensuring access to the purines needed to sustain an infection in the host.

View Article and Find Full Text PDF

Spermidine is a ubiquitous polyamine synthesized by spermidine synthase (SPDS) from the substrates, putrescine and decarboxylated S-adenosylmethionine (dcAdoMet). SPDS is generally active as homodimer, but higher oligomerization states have been reported in SPDS from thermophiles, which are less specific to putrescine as the aminoacceptor substrate. Several crystal structures of SPDS have been solved with and without bound substrates and/or products as well as inhibitors.

View Article and Find Full Text PDF

The 2015 Nobel Prize in Physiology and Medicine was awarded to Chinese Youyou Tu for her work on an antimalarial drug that she isolated from sweet wormwood (Artemisia annua L) and absinthe (Artemisia absinthium L) belonging to the genus of Artemisia. In this article we deal with the use of Artemisiae as medicinal plants through the ages, and several pharmacologically active compounds can be obtained from species of the genus Artemisia. We will particularly focus on two medicinally interesting species of Artemisiae - sweet wormwood and absinthe - as well as two pharmacologically significant compounds found in them, artemisin and thujone.

View Article and Find Full Text PDF

Gamma-aminobutyric acid type A receptors (GABAAR) are allosterically modulated by the nonsteroidal anti-inflammatory drugs diflunisal and fenamates. The carboxyl group of these compounds is charged at physiological pH and therefore penetration of the compounds into the brain is low. In the present study we have transformed the carboxyl group of diflunisal and meclofenamate into non-ionizable functional groups and analyzed the effects of the modifications on stimulation of [(3)H]muscimol binding and on potentiation of γ-aminobutyric acid-induced displacement of 4'-ethenyl-4-n-[2,3-(3)H]propylbicycloorthobenzoate.

View Article and Find Full Text PDF

Various commercial lyophilized and immobilized preparations of lipase A from Candida antarctica (CAL-A) were studied for their ability to catalyze the hydrolysis of amide bonds in N-acylated alpha-amino acids, 3-butanamidobutanoic acid (beta-amino acid) and its ethyl ester. The activity toward amide bonds is highly untypical of lipases, despite the close mechanistic analogy to amidases which normally catalyze the corresponding reactions. Most CAL-A preparations cleaved amide bonds of various substrates with high enantioselectivity, although high variations in substrate selectivity and catalytic rates were detected.

View Article and Find Full Text PDF