Angew Chem Int Ed Engl
October 2013
A prize for the ribbons: High-quality crystalline semiconducting nanoribbons can be prepared by "unwrapping" core-shell nanowire precursors. For example, Ge nanowires were coated with a Si shell and the top surface was carved by etching whereas the sides were protected by a thin layer of photoresist material. Finally the Ge core was removed selectively by chemical means to give fully opened and flat nanoribbon structures.
View Article and Find Full Text PDFDetection of biological species is of great importance to numerous areas of medical and life sciences from the diagnosis of diseases to the discovery of new drugs. Essential to the detection mechanism is the transduction of a signal associated with the specific recognition of biomolecules of interest. Nanowire-based electrical devices have been demonstrated as a powerful sensing platform for the highly sensitive detection of a wide-range of biological and chemical species.
View Article and Find Full Text PDFThe development of efficient biomolecular separation and purification techniques is of critical importance in modern genomics, proteomics, and biosensing areas, primarily due to the fact that most biosamples are mixtures of high diversity and complexity. Most of existent techniques lack the capability to rapidly and selectively separate and concentrate specific target proteins from a complex biosample, and are difficult to integrate with lab-on-a-chip sensing devices. Here, we demonstrate the development of an on-chip all-SiNW filtering, selective separation, desalting, and preconcentration platform for the direct analysis of whole blood and other complex biosamples.
View Article and Find Full Text PDFFunctional interfaces of biomolecules and inorganic substrates like semiconductor materials are of utmost importance for the development of highly sensitive biosensors and microarray technology. However, there is still a lot of room for improving the techniques for immobilization of biomolecules, in particular nucleic acids and proteins. Conventional anchoring strategies rely on attaching biomacromolecules via complementary functional groups, appropriate bifunctional linker molecules, or non-covalent immobilization via electrostatic interactions.
View Article and Find Full Text PDF