Publications by authors named "Artiom Bondarenco"

Releasing sterile or incompatible male insects is a proven method of population management in agricultural systems with the potential to revolutionize mosquito control. Through a collaborative venture with the "Debug" Verily Life Sciences team, we assessed the incompatible insect technique (IIT) with the mosquito vector in northern Australia in a replicated treatment control field trial. Backcrossing a US strain of carrying AlbB from with a local strain, we generated a AlbB2-F4 strain incompatible with both the wild-type (no ) and Mel- now extant in North Queensland.

View Article and Find Full Text PDF

Background: Sterile male rear-and-release programmes are of growing interest for controlling Aedes aegypti, including use an "incompatible insect technique" (IIT) to suppress transmission of dengue, Zika, and other viruses. Under IIT, males infected with Wolbachia are released into the suppression area to induce cytoplasmic incompatibility in uninfected populations. These and similar mosquito-release programmes require cost-effective field surveys of both sexes to optimize the locations, timing, and quantity of releases.

View Article and Find Full Text PDF

As the incidence of arboviral diseases such as dengue, Zika, chikungunya, and yellow fever increases globally, controlling their primary vector, Aedes aegypti (L.) (Diptera: Culicidae), is of greater importance than ever before. Mosquito control programs rely heavily on effective adult surveillance to ensure methodological efficacy.

View Article and Find Full Text PDF

Small insectivorous tree-roosting bats are among the most taxonomically diverse group of mammals in Australia's desert, yet little is known about their thermal physiology, torpor patterns and roosting ecology, especially during summer. We used temperature-telemetry to quantify and compare thermal biology and roost selection by broad-nosed bats (6.3 g; n = 11) and (9.

View Article and Find Full Text PDF

Climate change is predicted to increase temperature extremes and thus thermal stress on organisms. Animals living in hot deserts are already exposed to high ambient temperatures (T a) making them especially vulnerable to further warming. However, little is known about the effect of extreme heat events on small desert mammals, especially tree-roosting microbats that are not strongly protected from environmental temperature fluctuations.

View Article and Find Full Text PDF

Bats are among the most successful groups of Australian arid-zone mammals and, therefore, must cope with pronounced seasonal fluctuations in ambient temperature (T a), food availability and unpredictable weather patterns. As knowledge about the energy conserving strategies in desert bats is scant, we used temperature-telemetry to quantify the thermal physiology of tree-roosting inland freetail bats (Mormopterus species 3, 8.5 g, n = 8) at Sturt National Park over two summers (2010-2012), when T a was high and insects were relatively abundant.

View Article and Find Full Text PDF

Bats are most diverse in the tropics, but there are no quantitative data on torpor use for energy conservation by any tropical bat in the wild. We examined the thermal biology, activity patterns and torpor use of two tree-roosting long-eared bats (Nyctophilus geoffroyi, 7.8 g) in tropical northern Australia in winter using temperature telemetry.

View Article and Find Full Text PDF