Publications by authors named "Artigas F"

Altered development and function of the prefrontal cortex (PFC) during adolescence is implicated in the origin of mental disorders. Deficits in the GABAergic system prominently contribute to these alterations. Nav1.

View Article and Find Full Text PDF
Article Synopsis
  • The article highlights the need for better sexual health prevention and care for migrant women sex workers (WSWs), emphasizing the critical role of community health workers (CHWs) in linking these individuals to essential health services.
  • The study involved a one-year pilot intervention in Marseille, where CHWs conducted educational and supportive interventions, revealing that many migrant WSWs had low awareness of HIV prevention methods like PrEP and faced multiple vulnerabilities such as discrimination and lack of resources.
  • After the intervention, significant increases were noted in HIV testing (35%) and knowledge of PrEP (63%), alongside a 70% retention rate of participants, demonstrating the effectiveness of the CHWs in improving health outcomes.
View Article and Find Full Text PDF

Consciousness is thought to be regulated by bidirectional information transfer between the cortex and thalamus, but the nature of this bidirectional communication - and its possible disruption in unconsciousness - remains poorly understood. Here, we present two main findings elucidating mechanisms of corticothalamic information transfer during conscious states. First, we identify a highly preserved spectral channel of cortical-thalamic communication that is present during conscious states, but which is diminished during the loss of consciousness and enhanced during psychedelic states.

View Article and Find Full Text PDF

Background: The World Health Organization recommends pre-exposure prophylaxis (PrEP) for all populations at substantial risk of HIV infection. However, at-risk women very rarely use PrEP in France-this represents a critical issue among migrant women sex workers (MWSWs). Previous studies on PrEP use among women sex workers or migrants focused on individual or social determinants of motivation.

View Article and Find Full Text PDF

Antipsychotic drugs of different chemical/pharmacological families show preferential dopamine (DA) D receptor (D-R) vs. D receptor (D-R) affinity, with the exception of clozapine, the gold standard of schizophrenia treatment, which shows a comparable affinity for both DA receptors. Here, we examined the ability of Lu AF35700 (preferential D-R>D-R antagonist), to reverse the alterations in thalamo-cortical activity induced by phencyclidine (PCP), used as a pharmacological model of schizophrenia.

View Article and Find Full Text PDF

The reciprocal connectivity between the medial prefrontal cortex (mPFC) and the dorsal raphe nucleus (DR) is involved in mood control and resilience to stress. The infralimbic subdivision (IL) of the mPFC is the rodent equivalent of the ventral anterior cingulate cortex, which is intimately related to the pathophysiology/treatment of major depressive disorder (MDD). Boosting excitatory neurotransmission in the IL-but not in the prelimbic cortex, PrL-evokes depressive-like or antidepressant-like behaviors in rodents, which are associated with changes in serotonergic (5-HT) neurotransmission.

View Article and Find Full Text PDF

Tyrosine hydroxylase deficiency (THD) is a rare genetic disorder leading to dopaminergic depletion and early-onset Parkinsonism. Affected children present with either a severe form that does not respond to L-Dopa treatment (THD-B) or a milder L-Dopa responsive form (THD-A). We generated induced pluripotent stem cells (iPSCs) from THD patients that were differentiated into dopaminergic neurons (DAn) and compared with control-DAn from healthy individuals and gene-corrected isogenic controls.

View Article and Find Full Text PDF

Unlabelled: Improved air quality has been the silver lining of the pandemic since early 2020. The air quality in northern New Jersey (NJ) was continuously measured during the COVID-19 pandemic and through the three stages of recovery, i.e.

View Article and Find Full Text PDF

The infralimbic (IL) cortex is the rodent equivalent of human ventral anterior cingulate cortex (vACC), which plays a key role in the pathophysiology and treatment of major depressive disorder (MDD). The modulation of glutamatergic neurotransmission in IL [but not in the adjacent prelimbic (PrL) cortex] evokes antidepressant-like or depressive-like behaviors, associated with changes in serotonin (5-HT) function, highlighting the relevance of glutamate/serotonin interactions in IL for emotional control. 5-HT modulates neuronal activity in PrL and cingulate (Cg) cortex but its effects in IL are largely unknown.

View Article and Find Full Text PDF

Objective: Recently, we reported on a new MDD-like mouse model based on a regionally selective knockdown of astroglial glutamate transporters, GLAST/GLT-1, in infralimbic cortex (IL) which evokes widespread changes in mouse brain associated with the typical alterations found in MDD patients. To further characterize this new MDD-like mouse model, here we examine some transcriptional elements of glutamatergic/GABAergic neurotransmission and neuroplasticity in forebrain regions in the GLT-1 knockdown mice. Furthermore, we assess the acute ketamine effects on these transcriptional processes.

View Article and Find Full Text PDF

The central serotonin receptor (5-HTR) modulates 5-HT and dopamine (DA) neuronal function in the mammalian brain and has been suggested as a potential target for the treatment of neuropsychiatric disorders involving derangements of these monoamine systems, such as schizophrenia, cocaine abuse and dependence and major depressive disorder. Studies in rats and mice yielded contrasting results on the control of 5-HT/DA networks by 5-HTRs, thereby leading to opposite views on the therapeutic potential of 5-HTR agents for treating the above disorders. These discrepancies may result from anatomo-functional differences related to a different cellular location of 5-HTRs in rat and mouse brain.

View Article and Find Full Text PDF

Non-competitive NMDA receptor (NMDA-R) antagonists like ketamine, phencyclidine (PCP) and MK-801 are routinely used as pharmacological models of schizophrenia. However, the NMDA-R subtypes, neuronal types (e.g.

View Article and Find Full Text PDF

Anxiety and depression affect 35-50% of patients with Parkinson's disease (PD), often precede the onset of motor symptoms, and have a negative impact on their quality of life. Dysfunction of the serotonergic (5-HT) system, which regulates mood and emotional pathways, occurs during the premotor phase of PD and contributes to a variety of non-motor symptoms. Furthermore, α-synuclein (α-Syn) aggregates were identified in raphe nuclei in the early stages of the disease.

View Article and Find Full Text PDF

Schizophrenia is a severe mental disorder featuring psychotic, depressive, and cognitive alterations. Current antipsychotic drugs preferentially target dopamine D2-R and/or serotonergic 5-HT2A/1A-R. They partly alleviate psychotic symptoms but fail to treat negative symptoms and cognitive deficits.

View Article and Find Full Text PDF

Remarkable advances in understanding the role of RNA in health and disease have expanded considerably in the last decade. RNA is becoming an increasingly important target for therapeutic intervention; therefore, it is critical to develop strategies for therapeutic modulation of RNA function. Oligonucleotides, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA mimic (miRNA), and anti-microRNA (antagomir) are perhaps the most direct therapeutic strategies for addressing RNA.

View Article and Find Full Text PDF

α-Synuclein (α-Syn) protein is involved in the pathogenesis of Parkinson's disease (PD). Point mutations and multiplications of the α-Syn, which encodes the gene, are correlated with early-onset PD, therefore the reduction in a-Syn synthesis could be a potential therapy for PD if delivered to the key affected neurons. Several experimental strategies for PD have been developed in recent years using oligonucleotide therapeutics.

View Article and Find Full Text PDF

Acute ketamine administration evokes rapid and sustained antidepressant effects in treatment-resistant patients. However, ketamine also produces transient perceptual disturbances similarly to those evoked by other non-competitive NMDA-R antagonists like phencyclidine (PCP). Although the brain networks involved in both ketamine actions are not fully understood, PCP and ketamine activate thalamo-cortical networks after NMDA-R blockade in GABAergic neurons of the reticular thalamic nucleus (RtN).

View Article and Find Full Text PDF

Huntington's disease (HD) is a neurological disorder characterized by motor disturbances. HD pathology is most prominent in the striatum, the central hub of the basal ganglia. The cerebral cortex is the main striatal afferent, and progressive cortico-striatal disconnection characterizes HD.

View Article and Find Full Text PDF

Serotonin receptor (5-HTR) antagonists inhibit cocaine-induced hyperlocomotion independently of changes of accumbal dopamine (DA) release. Given the tight relationship between accumbal DA activity and locomotion, and the inhibitory role of medial prefrontal cortex (mPFC) DA on subcortical DA neurotransmission and DA-dependent behaviors, it has been suggested that the suppressive effect of 5-HTR antagonists on cocaine-induced hyperlocomotion may result from an activation of mPFC DA outflow which would subsequently inhibit accumbal DA neurotransmission. Here, we tested this hypothesis by means of the two selective 5-HTR antagonists, RS 127445 and LY 266097, using a combination of neurochemical, behavioral and cellular approaches in male rats.

View Article and Find Full Text PDF

Background: Progressive neuronal death in monoaminergic nuclei and widespread accumulation of α-synuclein are neuropathological hallmarks of Parkinson's disease (PD). Given that α-synuclein may be an early mediator of the pathological cascade that ultimately leads to neurodegeneration, decreased α-synuclein synthesis will abate neurotoxicity if delivered to the key affected neurons.

Methods: We used a non-viral gene therapy based on a new indatraline-conjugated antisense oligonucleotide (IND-ASO) to disrupt the α-synuclein mRNA transcription selectively in monoamine neurons of a PD-like mouse model and elderly nonhuman primates.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a chronic and disabling psychiatric disorder characterized by a wide range of signs/symptoms, including cognitive dysfunction. Vortioxetine (VOR) is a multimodal antidepressant drug with pro-cognitive actions in animal models and MDD patients. The VOR-mediated blockade of 5-HT-R in a subpopulation of GABA interneurons enhances pyramidal neuron activity in rat medial prefrontal cortex, an effect possibly underlying its pro-cognitive action.

View Article and Find Full Text PDF

Alterations of energy metabolism and of astrocyte number/function in ventral anterior cingulate cortex (vACC) have been reported in major depressive disorder (MDD) patients and may contribute to MDD pathophysiology. We recently developed a mouse model of MDD mimicking these alterations. We knocked down the astroglial glutamate transporters GLAST and GLT-1 in infralimbic cortex (IL, rodent equivalent of vACC) using small interfering RNA (siRNA).

View Article and Find Full Text PDF