Publications by authors named "Arthur von Wald Cresce"

We demonstrate an unusual electrochemical reaction of sulfur with lithium upon encapsulation in narrow-diameter (subnanometer) single-walled carbon nanotubes (SWNTs). Our study provides mechanistic insight on the synergistic effects of sulfur confinement and Li ion solvation properties that culminate in a new mechanism of these sub-nanoscale-enabled reactions (which cannot be solely attributed to the lithiation-delithiation of conventional sulfur). Two types of SWNTs with distinct diameters, produced by electric arc (EA-SWNTs, average diameter 1.

View Article and Find Full Text PDF

Highly conductive elastic composites were constructed using multistep solution-based fabrication methods that included the deposition of a nonwoven polymer fiber mat through solution blow spinning and nanoparticle nucleation. High nanoparticle loading was achieved by introducing silver nanoparticles into the fiber spinning solution. The presence of the silver nanoparticles facilitates improved uptake of silver nanoparticle precursor in subsequent processing steps.

View Article and Find Full Text PDF

As one of the landmark technologies, Li-ion batteries (LIBs) have reshaped our life in the 21stcentury, but molecular-level understanding about the mechanism underneath this young chemistry is still insufficient. Despite their deceptively simple appearances with just three active components (cathode and anode separated by electrolyte), the actual processes in LIBs involve complexities at all length-scales, from Li migration within electrode lattices or across crystalline boundaries and interfaces to the Li accommodation and dislocation at potentials far away from the thermodynamic equilibria of electrolytes. Among all, the interphases situated between electrodes and electrolytes remain the most elusive component in LIBs.

View Article and Find Full Text PDF

Electroactive interfaces distinguish electrochemistry from chemistry and enable electrochemical energy devices like batteries, fuel cells, and electric double layer capacitors. In batteries, electrolytes should be either thermodynamically stable at the electrode interfaces or kinetically stable by forming an electronically insulating but ionically conducting interphase. In addition to a traditional optimization of electrolytes by adding cosolvents and sacrificial additives to preferentially reduce or oxidize at the electrode surfaces, knowledge of the local electrolyte composition and structure within the double layer as a function of voltage constitutes the basis of manipulating an interphase and expanding the operating windows of electrochemical devices.

View Article and Find Full Text PDF

Using molecular dynamics simulations, small-angle neutron scattering, and a variety of spectroscopic techniques, we evaluated the ion solvation and transport behaviors in aqueous electrolytes containing bis(trifluoromethanesulfonyl)imide. We discovered that, at high salt concentrations (from 10 to 21 mol/kg), a disproportion of cation solvation occurs, leading to a liquid structure of heterogeneous domains with a characteristic length scale of 1 to 2 nm. This unusual nano-heterogeneity effectively decouples cations from the Coulombic traps of anions and provides a 3D percolating lithium-water network, via which 40% of the lithium cations are liberated for fast ion transport even in concentration ranges traditionally considered too viscous.

View Article and Find Full Text PDF

Despite the potential advantages it brings, such as wider liquid range and lower cost, propylene carbonate (PC) is seldom used in lithium-ion batteries because of its sustained cointercalation into the graphene structure and the eventual graphite exfoliation. Here, we report that cesium cation (Cs(+)) directs the formation of solid electrolyte interphase on graphite anode in PC-rich electrolytes through its preferential solvation by ethylene carbonate (EC) and the subsequent higher reduction potential of the complex cation. Effective suppression of PC-decomposition and graphite-exfoliation is achieved by adjusting the EC/PC ratio in electrolytes to allow a reductive decomposition of Cs(+)-(EC)m (1 ≤ m ≤ 2) complex preceding that of Li(+)-(PC)n (3 ≤ n ≤ 5).

View Article and Find Full Text PDF

A microscale battery comprised of mechanically exfoliated molybdenum disulfide (MoS2) flakes with copper connections and a sodium metal reference was created and investigated as an intercalation model using in situ atomic force microscopy in a dry room environment. While an ethylene carbonate-based electrolyte with a low vapor pressure allowed topographical observations in an open cell configuration, the planar microbattery was used to conduct in situ measurements to understand the structural changes and the concomitant solid electrolyte interphase (SEI) formation at the nanoscale. Topographical observations demonstrated permanent wrinkling behavior of MoS2 electrodes upon sodiation at 0.

View Article and Find Full Text PDF

The development of high-performance cathodes for sodium-ion batteries remains a great challenge, while low-cost, high-capacity Na2/3Fe1/2Mn1/2O2 is an attractive electrode material candidate comprised of earth-abundant elements. In this work, we designed and fabricated a free-standing, binder-free Na2/3Fe1/2Mn1/2O2@graphene composite via a filtration process. The porous composite led to excellent electrochemical performance due to the facile transport for electrons and ions that was characterized by electrochemical impedance spectroscopy at different temperatures.

View Article and Find Full Text PDF

To understand how Li(+) interacts with individual carbonate molecules in nonaqueous electrolytes, we conducted natural abundance (17)O NMR measurements on electrolyte solutions of 1 M LiPF6 in a series of binary solvent mixtures of ethylene carbonate (EC) and dimethyl carbonate (DMC). It was observed that the largest changes in (17)O chemical shift occurred at the carbonyl oxygens of EC, firmly establishing that Li(+) strongly prefers EC over DMC in typical nonaqueous electrolytes, while mainly coordinating with carbonyl rather than ethereal oxygens. Further quantitative analysis of the displacements in (17)O chemical shifts renders a detailed Li(+)-solvation structure in these electrolyte solutions, revealing that maximum six EC molecules can coexist in the Li(+)-solvation sheath, while DMC association with Li(+) is more "noncommittal" but simultaneously prevalent.

View Article and Find Full Text PDF

Transient expression levels, vector dissemination and toxicities associated with adenoviral vectors have prompted the usage of matrices for localized and controlled gene delivery. Two recombinant silk-elastinlike protein polymer analogues, SELP-47K and SELP-415K, consisting of different lengths and ratios of silk and elastin units, were previously shown to be injectable hydrogels capable of matrix-mediated controlled adenoviral gene delivery. Reported here is a study of spatiotemporal control over adenoviral gene expression with these SELP analogues in a human tumor xenograft model of head and neck cancer using whole animal imaging.

View Article and Find Full Text PDF