The co-occurrence of multiple chronic conditions, termed multimorbidity, presents an expanding global health challenge, demanding effective diagnostics and treatment strategies. Chronic ailments such as obesity, diabetes, and cardiovascular diseases have been linked to metabolites interacting between the host and microbiota. In this study, we investigated the impact of co-existing conditions on risk estimations for 1375 plasma metabolites in 919 individuals from population-based Estonian Biobank cohort using liquid chromatography mass spectrometry (LC-MS) method.
View Article and Find Full Text PDFHeterozygous variants in SLC6A1, encoding the GAT-1 GABA transporter, are associated with seizures, developmental delay, and autism. The majority of affected individuals carry missense variants, many of which are recurrent germline de novo mutations, raising the possibility of gain-of-function or dominant-negative effects. To understand the functional consequences, we performed an in vitro GABA uptake assay for 213 unique variants, including 24 control variants.
View Article and Find Full Text PDFGenetic variants in the SLC6A1 gene can cause a broad phenotypic disease spectrum by altering the protein function. Thus, systematically curated clinically relevant genotype-phenotype associations are needed to understand the disease mechanism and improve therapeutic decision-making. We aggregated genetic and clinical data from 172 individuals with likely pathogenic/pathogenic (lp/p) SLC6A1 variants and functional data for 184 variants (14.
View Article and Find Full Text PDFBackground: The basis of Age-related macular degeneration (AMD) genetic risk has been well documented; however, few studies have looked at genetic biomarkers of disease progression or treatment response within advanced AMD patients. Here we report the first genome-wide analysis of genetic determinants of low-luminance vision deficit (LLD), which is seen as predictive of visual acuity loss and anti-VEGF treatment response in neovascular AMD patients.
Methods: AMD patients were separated into small- and large-LLD groups for comparison and whole genome sequencing was performed.
Prioritizing genes for translation to therapeutics for common diseases has been challenging. Here, we propose an approach to identify drug targets with high probability of success by focusing on genes with both gain of function (GoF) and loss of function (LoF) mutations associated with opposing effects on phenotype (Bidirectional Effect Selected Targets, BEST). We find 98 BEST genes for a variety of indications.
View Article and Find Full Text PDFIntestinal epithelial cells form a physical barrier that is tightly regulated to control intestinal permeability. Proinflammatory cytokines, such as TNF-α, increase epithelial permeability through disruption of epithelial junctions. The regulation of the epithelial barrier in inflammatory gastrointestinal disease remains to be fully characterized.
View Article and Find Full Text PDFObjectives: The gene encoding glucose transporter 3 (GLUT3, ) is present in the human population at variable copy number. An overt disease phenotype of copy number variants has not been reported; however, deletion of has been previously reported to protect carriers from rheumatoid arthritis, implicating GLUT3 as a therapeutic target in rheumatoid arthritis. Here we aim to perform functional analysis of GLUT3 copy number variants in immune cells, and test the reported protective association of the GLUT3 copy number variants for rheumatoid arthritis in a genetic replication study.
View Article and Find Full Text PDFBoth common and rare genetic variants of laccase domain-containing 1 (, previously C13orf31) are associated with inflammatory bowel disease, leprosy, Behcet disease, and systemic juvenile idiopathic arthritis. However, the functional relevance of these variants is unclear. In this study, we use LACC1-deficient mice to gain insight into the role of LACC1 in regulating inflammation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2018
Cancer immunotherapy has emerged as an effective therapy in a variety of cancers. However, a key challenge in the field is that only a subset of patients who receive immunotherapy exhibit durable response. It has been hypothesized that host genetics influences the inherent immune profiles of patients and may underlie their differential response to immunotherapy.
View Article and Find Full Text PDFPaired Immunoglobulin-like Type 2 Receptor Alpha (PILRA) is a cell surface inhibitory receptor that recognizes specific O-glycosylated proteins and is expressed on various innate immune cell types including microglia. We show here that a common missense variant (G78R, rs1859788) of PILRA is the likely causal allele for the confirmed Alzheimer's disease risk locus at 7q21 (rs1476679). The G78R variant alters the interaction of residues essential for sialic acid engagement, resulting in >50% reduced binding for several PILRA ligands including a novel ligand, complement component 4A, and herpes simplex virus 1 (HSV-1) glycoprotein B.
View Article and Find Full Text PDFDecoding the information in mRNA during protein synthesis relies on tRNA adaptors, the abundance of which can affect the decoding rate and translation efficiency. To determine whether cells alter tRNA abundance to selectively regulate protein expression, we quantified changes in the abundance of individual tRNAs at different time points in response to diverse stress conditions in We found that the tRNA pool was dynamic and rearranged in a manner that facilitated selective translation of stress-related transcripts. Through genomic analysis of multiple data sets, stochastic simulations, and experiments with designed sequences of proteins with identical amino acids but altered codon usage, we showed that changes in tRNA abundance affected protein expression independently of factors such as mRNA abundance.
View Article and Find Full Text PDFIn clinical trials, a placebo response refers to improvement in disease symptoms arising from the psychological effect of receiving a treatment rather than the actual treatment under investigation. Previous research has reported genomic variation associated with the likelihood of observing a placebo response, but these studies have been limited in scope and have not been validated. Here, we analyzed whole-genome sequencing data from 784 patients undergoing placebo treatment in Phase III Asthma or Rheumatoid Arthritis trials to assess the impact of previously reported variation on patient outcomes in the placebo arms and to identify novel variants associated with the placebo response.
View Article and Find Full Text PDFHeterozygous mutations within homozygous sequences descended from a recent common ancestor offer a way to ascertain de novo mutations across multiple generations. Using exome sequences from 3222 British-Pakistani individuals with high parental relatedness, we estimate a mutation rate of 1.45 ± 0.
View Article and Find Full Text PDFOx40 ligand (Ox40L) locus genetic variants are associated with the risk for systemic lupus erythematosus (SLE); however, it is unclear how Ox40L contributes to SLE pathogenesis. In this study, we evaluated the contribution of Ox40L and its cognate receptor, Ox40, using in vivo agonist and antagonist approaches in the NZB × NZW (NZB/W) F1 mouse model of SLE. Ox40 was highly expressed on several CD4 Th cell subsets in the spleen and kidney of diseased mice, and expression correlated with disease severity.
View Article and Find Full Text PDFDe novo copy number variants (dnCNVs) arising at multiple loci in a personal genome have usually been considered to reflect cancer somatic genomic instabilities. We describe a multiple dnCNV (MdnCNV) phenomenon in which individuals with genomic disorders carry five to ten constitutional dnCNVs. These CNVs originate from independent formation incidences, are predominantly tandem duplications or complex gains, exhibit breakpoint junction features reminiscent of replicative repair, and show increased de novo point mutations flanking the rearrangement junctions.
View Article and Find Full Text PDFMotivation: We have developed geneAttribution, an R package that assigns candidate causal gene(s) to a risk variant identified by a genetic association study such as a GWAS. The method combines user-supplied functional annotation such as expression quantitative trait loci (eQTL) or Hi-C genome conformation data and reports the most likely candidate genes. In the absence of annotation data, geneAttribution relies on the distances between the genes and the input variant.
View Article and Find Full Text PDFThe accuracy of replicating the genetic code is fundamental. DNA repair mechanisms protect the fidelity of the genome ensuring a low error rate between generations. This sustains the similarity of individuals whilst providing a repertoire of variants for evolution.
View Article and Find Full Text PDFA search for the genetic causes of an autoimmune disease called systemic lupus erythematosus reveals a new twist on an old story.
View Article and Find Full Text PDFThe DENN domain is an evolutionary conserved protein module found in all eukaryotes and serves as an exchange factor for Rab-GTPases to regulate diverse cellular functions. Variants in DENND1B are associated with development of childhood asthma and other immune disorders. To understand how DENND1B may contribute to human disease, Dennd1b(-/-) mice were generated and exhibit hyper-allergic responses following antigen challenge.
View Article and Find Full Text PDFGermline mutations are a driving force behind genome evolution and genetic disease. We investigated genome-wide mutation rates and spectra in multi-sibling families. The mutation rate increased with paternal age in all families, but the number of additional mutations per year differed by more than twofold between families.
View Article and Find Full Text PDFWe present DeNovoGear software for analyzing de novo mutations from familial and somatic tissue sequencing data. DeNovoGear uses likelihood-based error modeling to reduce the false positive rate of mutation discovery in exome analysis and fragment information to identify the parental origin of germ-line mutations. We used DeNovoGear on human whole-genome sequencing data to produce a set of predicted de novo insertion and/or deletion (indel) mutations with a 95% validation rate.
View Article and Find Full Text PDFWe present a cross-species chemogenomic screening platform using libraries of haploid deletion mutants from two yeast species, Saccharomyces cerevisiae and Schizosaccharomyces pombe. We screened a set of compounds of known and unknown mode of action (MoA) and derived quantitative drug scores (or D-scores), identifying mutants that are either sensitive or resistant to particular compounds. We found that compound-functional module relationships are more conserved than individual compound-gene interactions between these two species.
View Article and Find Full Text PDFMotivation: Spial (Specificity in alignments) is a tool for the comparative analysis of two alignments of evolutionarily related sequences that differ in their function, such as two receptor subtypes. It highlights functionally important residues that are either specific to one of the two alignments or conserved across both alignments. It permits visualization of this information in three complementary ways: by colour-coding alignment positions, by sequence logos and optionally by colour-coding the residues of a protein structure provided by the user.
View Article and Find Full Text PDFQuorum sensing is a process of intercellular communication. It allows individual cells to assess population density and to co-ordinate behaviour by secreting and sensing communication molecules. In the yeast Saccharomyces cerevisiae, the communication molecules are the aromatic alcohols tryptophol and phenylethanol, and quorum sensing regulates the transition between the solitary yeast form and the filamentous form.
View Article and Find Full Text PDFAlthough several studies have provided important insights into the general principles of biological networks, the link between network organization and the genome-scale dynamics of the underlying entities (genes, mRNAs, and proteins) and its role in systems behavior remain unclear. Here we show that transcription factor (TF) dynamics and regulatory network organization are tightly linked. By classifying TFs in the yeast regulatory network into three hierarchical layers (top, core, and bottom) and integrating diverse genome-scale datasets, we find that the TFs have static and dynamic properties that are similar within a layer and different across layers.
View Article and Find Full Text PDF