Background: While serial sampling of glioma tissue is rarely performed prior to recurrence, cerebrospinal fluid (CSF) is an underutilized longitudinal source of candidate glioma biomarkers for understanding therapeutic impacts. However, the impact of key variables to consider in longitudinal CSF samples for monitoring biomarker discovery, including anatomical location and post-surgical changes, remains unknown.
Methods: Aptamer-based proteomics was performed on 147 CSF samples from 74 patients, 71 of whom had grade 2-4 astrocytomas or grade 2-3 oligodendrogliomas.
Cerebrospinal fluid (CSF) has emerged as a valuable liquid biopsy source for glioma biomarker discovery and validation. CSF produced within the ventricles circulates through the subarachnoid space, where the composition of glioma-derived analytes is influenced by the proximity and anatomical location of sampling relative to tumor, in addition to underlying tumor biology. The substantial gradients observed between lumbar and intracranial CSF compartments for tumor-derived analytes underscore the importance of sampling site selection.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2024
There is an urgent need for agents that promote health and regeneration of cells and tissues, specifically to treat diseases of the aging nervous system. Age-associated nervous system degeneration and various diseases are driven by many different biochemical stresses, often making it difficult to target any one disease cause. Our laboratory has previously identified DNA aptamers with apparent regenerative properties in murine models of multiple sclerosis by selecting aptamers that bind oligodendrocyte membrane preparations.
View Article and Find Full Text PDFPurpose: Current methods for glioma response assessment are limited. This study aimed to assess the technical and clinical feasibility of molecular profiling using longitudinal intracranial CSF from patients with gliomas.
Experimental Design: Adults with gliomas underwent longitudinal intracranial CSF collection via Ommaya reservoirs or ventriculoperitoneal shunts.
Aberrant metabolism is a hallmark of malignancies including gliomas. Intracranial microdialysis enables the longitudinal collection of extracellular metabolites within CNS tissues including gliomas and can be leveraged to evaluate changes in the CNS microenvironment over a period of days. However, delayed metabolic impacts of CNS injury from catheter placement could represent an important covariate for interpreting the pharmacodynamic impacts of candidate therapies.
View Article and Find Full Text PDFUnlabelled: While serial sampling of glioma tissue is rarely performed prior to recurrence, cerebrospinal fluid (CSF) is an underutilized longitudinal source of candidate glioma biomarkers for understanding therapeutic impacts. However, the impact of key variables to consider in longitudinal CSF samples, including anatomical location and post-surgical changes, remains unknown. To that end, pre- versus post-resection intracranial CSF samples were obtained at early (1-16 days; n=20) or delayed (86-153 days; n=11) timepoints for patients with glioma.
View Article and Find Full Text PDFBackground: Microdialysis is a technique that can be utilized to sample the interstitial fluid of the central nervous system (CNS), including in primary malignant brain tumors known as gliomas. Gliomas are mainly accessible at the time of surgery, but have rarely been analyzed via interstitial fluid collected via microdialysis. To that end, we obtained an investigational device exemption for high molecular weight catheters (HMW, 100 kDa) and a variable flow rate pump to perform microdialysis at flow rates amenable to an intra-operative setting.
View Article and Find Full Text PDFHigh-grade gliomas are primary brain tumors that are incredibly refractory long-term to surgery and chemoradiation, with no proven durable salvage therapies for patients that have failed conventional treatments. Post-treatment, the latent glioma and its microenvironment are characterized by a senescent-like state of mitotic arrest and a senescence-associated secretory phenotype (SASP) induced by prior chemoradiation. Although senescence was once thought to be irreversible, recent evidence has demonstrated that cells may escape this state and re-enter the cell cycle, contributing to tumor recurrence.
View Article and Find Full Text PDFThe extracellular microenvironment modulates glioma behaviour. It remains unknown if blood-brain barrier disruption merely reflects or functionally supports glioma aggressiveness. We utilised intra-operative microdialysis to sample the extracellular metabolome of radiographically diverse regions of gliomas and evaluated the global extracellular metabolome via ultra-performance liquid chromatography tandem mass spectrometry.
View Article and Find Full Text PDFD-2-hydroxyglutarate (D-2-HG) is a well-established oncometabolite of isocitrate dehydrogenase (IDH) mutant gliomas. While prior studies have demonstrated that D-2-HG is elevated in the cerebrospinal fluid (CSF) of patients with IDH-mutant gliomas , no study has determined if CSF D-2-HG can provide a plausible method to evaluate therapeutic response. We are obtaining CSF samples from consenting patients during their disease course via intra-operative collection and Ommaya reservoirs.
View Article and Find Full Text PDFHigh-grade gliomas are the most common and aggressive adult primary brain tumors with a median survival of only 12-15 months. Current standard therapy consists of maximal safe surgical resection followed by DNA-damaging agents, such as irradiation and chemotherapy that can delay but not prevent inevitable recurrence. Some have interpreted glioma recurrence as evidence of glioma stem cells which persist in a relatively quiescent state after irradiation and chemotherapy, before the ultimate cell cycle re-entry and glioma recurrence.
View Article and Find Full Text PDFMult Scler J Exp Transl Clin
April 2022
Background: Recombinant human immunoglobulin M22 (rHIgM22) has promoted remyelination in animal models and was well tolerated in people with clinically stable multiple sclerosis.
Objective: Safety/tolerability of a single rHIgM22 dose was investigated following an acute relapse and to determine whether this enhanced CNS/CSF concentrations.
Methods: Adults (N = 27) with acute relapse were assigned to rHIgM22 (0.
Unlabelled: Glioblastoma (GBM) is a rapidly fatal malignancy typically treated with radiation and temozolomide (TMZ), an alkylating chemotherapeutic. These cytotoxic therapies cause oxidative stress and DNA damage, yielding a senescent-like state of replicative arrest in surviving tumor cells. Unfortunately, recurrence is inevitable and may be driven by surviving tumor cells eventually escaping senescence.
View Article and Find Full Text PDFMultiple sclerosis (MS) is the most common inflammatory disease of the central nervous system (CNS). Demyelination, the main pathology in MS, contributes to clinical symptoms and long-term neurological deficits if left untreated. Remyelination, the natural repair of damaged myelin by cells of the oligodendrocyte lineage, occurs in MS, but eventually fails in most patients as they age.
View Article and Find Full Text PDFWe previously applied Systematic Evolution of Ligands by EXponential enrichment (SELEX) technology to identify myelin-specific DNA aptamers, using crude mouse central nervous system myelin as bait. This selection identified a 40-nucleotide aptamer (LJM-3064). Multiple biotinylated LJM-3064 molecules were conjugated to a streptavidin core to mimic a multimeric immunoglobulin M (IgM) antibody, generating 3064-BS-streptavidin (Myaptavin-3064).
View Article and Find Full Text PDFProgressive multi-focal leukoencephalopathy (PML) is a potentially fatal encephalitis caused by JC polyomavirus (JCV). PML principally affects people with a compromised immune system, such as patients with multiple sclerosis (MS) receiving treatment with natalizumab. However, intrathecal synthesis of lipid-reactive IgM in MS patients is associated with a markedly lower incidence of natalizumab-associated PML compared to those without this antibody repertoire.
View Article and Find Full Text PDFTherapeutic monoclonal antibodies have the potential to work as biological therapeutics. OKT3, Herceptin, Keytruda and others have positively impacted healthcare. Antibodies evolved naturally to provide high specificity and high affinity once mature.
View Article and Find Full Text PDFWe previously reported the selection and characterization of a DNA aptamer capable of stimulating remyelination in a mouse model of multiple sclerosis. This aptamer was selected for its ability to bind to suspensions of crude murine myelin . Our initial studies and involved a 40-nucleotide derivative (LJM-3064) of the original 100-nucleotide aptamer.
View Article and Find Full Text PDFGlioblastoma is the most common adult primary brain tumor and carries a dismal prognosis. Radiation is a standard first-line therapy, typically deployed following maximal safe surgical debulking, when possible, in combination with cytotoxic chemotherapy. For other systemic cancers, standard of care is being transformed by immunotherapies, including checkpoint-blocking antibodies targeting CTLA-4 and PD-1/PD-L1, with potential for long-term remission.
View Article and Find Full Text PDFAntibodies are vital components of the adaptive immune system for the recognition and response to foreign antigens. However, some antibodies recognize self-antigens in healthy individuals. These autoreactive antibodies may modulate innate immune functions.
View Article and Find Full Text PDFrHIgM22 is a recombinant human monoclonal IgM designed to promote remyelination, and it is currently in Phase I clinical trials in patients with multiple sclerosis (MS). In animal models of demyelination, a single low dose of rHIgM22 stimulates oligodendrocyte maturation, induces remyelination, preserves axons, and slows the decline of locomotor deficits. Natural autoantibodies like rHIgM22 typically bind to multiple antigens with weak affinity.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a debilitating disease for which regenerative therapies are sought. We have previously described human antibodies and DNA aptamer-streptavidin conjugates that promote remyelination after systemic injection into mice infected by Theiler's murine encephalomyelitis virus. Here, we report an assay of myelin binding with results that correlate with remyelination outcome , as shown for data from a set of DNA aptamer complexes of different size and formulation.
View Article and Find Full Text PDFIntroduction: Multiple sclerosis (MS) is a chronic and progressive inflammatory demyelinating disease of the human central nervous system (CNS) and is the most common disabling neurological condition in young adults, resulting in severe neurological defects. No curative or long-term progression-inhibiting therapy has yet been developed. However, recent investigation has revealed potential strategies that do not merely modulate potentially pathogenic autoimmune responses, but stimulate remyelination within CNS lesions.
View Article and Find Full Text PDFMultiple sclerosis is an inflammatory demyelinating disease of the central nervous system with a variety of presentations and unclear pathogenesis. Multiple sclerosis has been associated with the term autoimmunity as a surrogate for pathogenesis. Multiple sclerosis is an organ-specific disease with immune-mediated myelin destruction.
View Article and Find Full Text PDF