The classic notion that humans are microsmatic animals was born from comparative anatomy studies showing the reduction in the size of both the olfactory bulbs and the limbic brain relative to the whole brain. However, the human olfactory system contains a number of neurons comparable to that of most other mammals, and humans have exquisite olfactory abilities. Major advances in molecular and genetic research have resulted in the identification of extremely large gene families that express receptors for sensing odors.
View Article and Find Full Text PDF"Olfactory subsystems" is a relatively new terminology to refer to the different regions of the nasal cavity featuring olfactory sensory neurons. In mice, the olfactory chemical cues are detected in four well delimited areas: the main olfactory epithelium, the septal organ, Grüneberg's ganglion, and the sensory epithelium of the vomeronasal organ. Nevertheless, such distribution is by no means exhibited by all mammals.
View Article and Find Full Text PDFAlthough the most intensively studied mammalian olfactory system is that of the mouse, in which olfactory chemical cues of one kind or another are detected in four different nasal areas [the main olfactory epithelium (MOE), the septal organ (SO), Grüneberg's ganglion, and the sensory epithelium of the vomeronasal organ (VNO)], the extraordinarily sensitive olfactory system of the dog is also an important model that is increasingly used, for example in genomic studies of species evolution. Here we describe the topography and extent of the main olfactory and vomeronasal sensory epithelia of the dog, and we report finding no structures equivalent to the Grüneberg ganglion and SO of the mouse. Since we examined adults, newborns, and fetuses we conclude that these latter structures are absent in dogs, possibly as the result of regression or involution.
View Article and Find Full Text PDFMacro and microdissection methods, conventional histology and immunohistochemical procedures were used to investigate the nasal cavity and turbinate complex in fetal and adult sheep, with special attention to the ethmoturbinates, the vestibular mucosa, and the septal mucosa posterior to the vomeronasal organ. The ectoturbinates, which are variable in number and size, emerge and develop later than the endoturbinates. The olfactory sensory epithelium is composed of basal cells, neurons, and sustentacular cells organized in strata, but numerous different types are distinguishable on the basis of their thickness and other properties; all variants are present on the more developed turbinates, endoturbinates II and III.
View Article and Find Full Text PDFThe four regions of the murine nasal cavity featuring olfactory neurons were studied anatomically and by labeling with lectins and relevant antibodies with a view to establishing criteria for the identification of olfactory subsystems that are readily applicable to other mammals. In the main olfactory epithelium and the septal organ the olfactory sensory neurons (OSNs) are embedded in quasi-stratified columnar epithelium; vomeronasal OSNs are embedded in epithelium lining the medial interior wall of the vomeronasal duct and do not make contact with the mucosa of the main nasal cavity; and in Grüneberg's ganglion a small isolated population of OSNs lies adjacent to, but not within, the epithelium. With the exception of Grüneberg's ganglion, all the tissues expressing olfactory marker protein (OMP) (the above four nasal territories, the vomeronasal and main olfactory nerves, and the main and accessory olfactory bulbs) are also labeled by Lycopersicum esculentum agglutinin, while Ulex europaeus agglutinin I labels all and only tissues expressing Gαi2 (the apical sensory neurons of the vomeronasal organ, their axons, and their glomerular destinations in the anterior accessory olfactory bulb).
View Article and Find Full Text PDF