Publications by authors named "Arthur Straughn"

In 2000, the first biphasic modified-release (MR) formulation of methylphenidate (MPH) was approved for the treatment of attention-deficit/hyperactivity disorder (ADHD). An immediate-release (IR) MPH pulse (22% of the dose) facilitates rapid onset of stimulant action, while the remaining MR portion of the dose provides for day-long duration of efficacy. A wide array of oral MR-MPH products has subsequently been approved that also allows for once-daily dosing, though each product is characterized by distinctive exposure time courses.

View Article and Find Full Text PDF

Background/purpose: Ethanol coadministered with immediate-release dl-methylphenidate (dl-MPH) or dexmethylphenidate (d-MPH) significantly increases the geomean maximum plasma concentration (Cmax) of d-MPH 22% and 15%, respectively, and elevates overall drug exposure and psychostimulant effects. We asked the question: Are these ethanol-MPH interactions based more fundamentally on (1) inhibition of postabsorption d-MPH metabolism or (2) acceleration of MPH formulation gastric dissolution by ethanol in the stomach? This was investigated using the pulsatile, distinctly biphasic, spheroidal oral drug absorption systems of dl-MPH and d-MPH.

Methods: In a randomized, 4-way crossover study, 14 healthy subjects received pulsatile dl-MPH (40 mg) or d-MPH (20 mg), with or without ethanol (0.

View Article and Find Full Text PDF

The postulate that twice the milligram/kilogram dose of dl-methylphenidate (dl-MPH) would result in equal exposure to d-MPH compared with half that milligram/kilogram dose of the chiral switch product dexmethylphenidate (d-MPH) was tested. Using a randomized, crossover study design, 12 men and 12 women received either immediate-release (IR) dl-MPH (0.3 mg/kg) or IR d-MPH (0.

View Article and Find Full Text PDF

The potentiation of positive subjective responses to immediate-release dexmethylphenidate (d-MPH) or dl-methylphenidate (dl-MPH) by ethanol was investigated over the time course of maximal drug exposure after a single dose. In a 4-way, randomized, crossover study design, 12 men and 12 women normal volunteers received d-MPH (0.15 mg/kg) or dl-MPH (0.

View Article and Find Full Text PDF

Enantioselective hydrolysis of oral racemic methylphenidate (dl-MPH) by carboxylesterase 1 (CES1) limits the absolute bioavailability of the pharmacologically active d-MPH isomer to approximately 30% and that of the inactive l-MPH to only 1-2%. Coadministration of dl-MPH with ethanol results in elevated d-MPH plasma concentrations accompanied by CES1-mediated enantioselective transesterification of l-MPH to l-ethylphenidate (EPH). The present study tested the hypothesis that administration of the pure isomer dexmethylphenidate (d-MPH) will overcome the influence of ethanol on d-MPH absorption by eliminating competitive CES1-mediated presystemic metabolism of l-MPH to l-EPH.

View Article and Find Full Text PDF

Objective: The following comprehensive review describes the evolution of stimulant drug formulations used in the treatment of attention-deficit/hyperactivity disorder (ADHD). Emphasis is placed on the basic and clinical pharmacology of the dl-methylphenidate (MPH) transdermal system (MTS).

Methods: The pharmacokinetic and pharmacodynamic literature pertaining to MPH and amphetamine enantiomers was reviewed in the context of ADHD therapy and MTS as a treatment option.

View Article and Find Full Text PDF

A novel lipid formulation containing fenofibrate in omega-3 oil was developed using a novel high-throughput screening platform. The optimized formulation combines the cardiovascular health benefits from omega-3 oil with the potent lipid-regulating effect of fenofibrate. When tested against the current marketed product Tricor in healthy human volunteers, the new formulation was shown to be equivalent to Tricor.

View Article and Find Full Text PDF

dl-Methylphenidate (MPH) remains the most widely used pharmacological agent in the treatment of attention-deficit/hyperactivity disorder (ADHD). The predominantly dopaminergic mechanism of the psychostimulant actions has become more clearly defined. Neuroimaging and genetic studies are revealing the underlying neuropathology in ADHD.

View Article and Find Full Text PDF

Purpose: These studies evaluated the ability of common household food and drink products to mask the bitter taste of three selected anti-terrorism drugs.

Methods: Three anti-terrorism drugs (doxycycline, ciprofloxacin hydrochloride, and potassium iodide) were mixed with a variety of common household food and drinks, and healthy adult volunteers evaluated the resulting taste and aftertaste. In parallel, the ASTREE Electronic Tongue was used to evaluate taste combinations.

View Article and Find Full Text PDF

The purpose of this study is to test the hypothesis that rapidly dissolving immediate-release (IR) solid oral products containing a highly soluble and highly permeable drug [biopharmaceutical classification system (BCS) class I] are bioequivalent under fed conditions. Metoprolol and propranolol (BCS class I) as well as hydrochlorothiazide (BCS class III) were selected as model drugs. The relative bioavailability of two FDA approved (Orange Book AB rating) solid oral dosage forms of metoprolol and propranolol/hydrochlorothiazide (combination tablets) was evaluated in human volunteers under fed conditions using a two-way crossover design.

View Article and Find Full Text PDF

The psychostimulant dl-methylphenidate (MPH) remains the most common drug therapy in child and adolescent psychiatry for the treatment of attention-deficit-hyperactivity disorder (ADHD). Evidence of a dopaminergic basis both for the actions of MPH and for the underlying neuropathology in ADHD continues to mount. Advances in the biopharmaceutics of MPH have been conspicuous.

View Article and Find Full Text PDF

Objective: To compare the rate and extent of absorption of DL-threo-methylphenidate (MPH) from two modified-release MPH formulations at their respective recommended starting doses in healthy adult volunteers.

Design: Open-label, randomised, crossover, bioavailability study.

Participants: Twenty healthy adult male and female volunteers.

View Article and Find Full Text PDF

5-Aminolevulinic acid (ALA) is a precursor of protoporphyrin IX (PpIX) that is being evaluated for use in photodiagnosis and phototherapy of malignant and nonmalignant disorders. Previous clinical studies using topical, oral, and intravesical administration have been conducted in attempts to determine the optimal route of administration for ALA. The purpose of these studies was to examine the systemic pharmacokinetics and elimination of ALA, the bioavailability of ALA after oral and intravesical doses, and the factors that affect ALA concentrations in the bladder during intravesical treatment.

View Article and Find Full Text PDF