Publications by authors named "Arthur R Houweling"

A single whisker stimulus elicits action potentials in a sparse subset of neurons in somatosensory cortex. The precise contribution of these neurons to the animal's perception of a whisker stimulus is unknown. Here we show that single-cell stimulation in rat barrel cortex of both sexes influences the psychophysical detection of a near-threshold whisker stimulus in a cell type-dependent manner, without affecting false alarm rate.

View Article and Find Full Text PDF

Temporal patterns of action potentials influence a variety of activity-dependent intra- and intercellular processes and play an important role in theories of neural coding. Elucidating the mechanisms underlying these phenomena requires imposing spike trains with precisely defined patterns, but this has been challenging due to the limitations of existing stimulation techniques. Here we present a new nanostimulation method providing control over the action potential output of individual cortical neurons.

View Article and Find Full Text PDF

Neuronal circuits in the rodent barrel cortex are characterized by stable low firing rates. However, recent experiments show that short spike trains elicited by electrical stimulation in single neurons can induce behavioral responses. Hence, the underlying neural networks provide stability against internal fluctuations in the firing rate, while simultaneously making the circuits sensitive to small external perturbations.

View Article and Find Full Text PDF

The action potential activity of single cortical neurons can evoke measurable sensory effects, but it is not known how spiking parameters and neuronal subtypes affect the evoked sensations. Here, we examined the effects of spike train irregularity, spike frequency, and spike number on the detectability of single-neuron stimulation in rat somatosensory cortex. For regular-spiking, putative excitatory neurons, detectability increased with spike train irregularity and decreasing spike frequencies but was not affected by spike number.

View Article and Find Full Text PDF

Neuronal networks in rodent barrel cortex are characterized by stable low baseline firing rates. However, they are sensitive to the action potentials of single neurons as suggested by recent single-cell stimulation experiments that reported quantifiable behavioral responses in response to short spike trains elicited in single neurons. Hence, these networks are stable against internally generated fluctuations in firing rate but at the same time remain sensitive to similarly-sized externally induced perturbations.

View Article and Find Full Text PDF
Article Synopsis
  • The rodent whisker system serves as a crucial model for studying sensory integration, cognitive tasks, neural development, and robotics, with a focus on the pathways to the barrel cortex.
  • Significant subcortical structures play vital roles in this system by filtering sensory information, integrating inputs from other senses, and adapting to the animal's behavioral state.
  • The article reviews the anatomy and function of various brain regions, including both the cerebral cortex and subcortical areas like the striatum and cerebellum, and discusses their interactions in controlling whisker movement and perception timing.*
View Article and Find Full Text PDF

Activity in cortical networks is heterogeneous, sparse and often precisely timed. The functional significance of sparseness and precise spike timing is debated, but our understanding of the developmental and synaptic mechanisms that shape neuronal discharge patterns has improved. Evidence for highly specialized, selective and abstract cortical response properties is accumulating.

View Article and Find Full Text PDF

In the mammalian brain, many thousands of single-neuron recording studies have been performed but less than 10 single-cell stimulation studies. This paucity of single-cell stimulation data reflects a lack of easily applicable single-cell stimulation techniques. We provide a detailed description of the procedures involved in nanostimulation, a single-cell stimulation method derived from the juxtacellular labeling technique.

View Article and Find Full Text PDF

Most of our current knowledge about the neural control of behavior is based on electrophysiology. Here we review advances and limitations of current electrophysiological recording techniques applied in behaving animals. Extracellular recording methods have improved with respect to sampling density and miniaturization, and our understanding of the nature of the recorded signals has advanced.

View Article and Find Full Text PDF

In mammals, most sensory information passes through the thalamus before reaching cortex. In the rat whisker system, each macrovibrissa is represented by approximately 250 neurons in the ventral posterior medial nucleus (VPM) of the thalamus and approximately 10,000 neurons in a cortical barrel column. Here we quantify the sensory impact of individual thalamic neurons in the rat VPM.

View Article and Find Full Text PDF

It is unclear how the complex spatiotemporal organization of ongoing cortical neuronal activity recorded in anesthetized animals relates to the awake animal. We therefore used two-photon population calcium imaging in awake and subsequently anesthetized rats to follow action potential firing in populations of neurons across brain states, and examined how single neurons contributed to population activity. Firing rates and spike bursting in awake rats were higher, and pair-wise correlations were lower, compared with anesthetized rats.

View Article and Find Full Text PDF

Understanding how neural activity in sensory cortices relates to perception is a central theme of neuroscience. Action potentials of sensory cortical neurons can be strongly correlated to properties of sensory stimuli and reflect the subjective judgements of an individual about stimuli. Microstimulation experiments have established a direct link from sensory activity to behaviour, suggesting that small neuronal populations can influence sensory decisions.

View Article and Find Full Text PDF

Chronically isolated neocortex develops chronic hyperexcitability and focal epileptogenesis in a period of days to weeks. The mechanisms operating in this model of post-traumatic epileptogenesis are not well understood. We hypothesized that the spontaneous burst discharges recorded in chronically isolated neocortex result from homeostatic plasticity (a mechanism generally assumed to stabilize neuronal activity) induced by low neuronal activity after deafferentation.

View Article and Find Full Text PDF

Thalamic stimulation at frequencies between 5 and 15 Hz elicits incremental or 'augmenting' cortical responses. Augmenting responses can also be evoked in cortical slices and isolated cortical slabs in vivo. Here we show that a realistic network model of cortical pyramidal cells and interneurones including short-term plasticity of inhibitory and excitatory synapses replicates the main features of augmenting responses as obtained in isolated slabs in vivo.

View Article and Find Full Text PDF

Plastic changes in the synaptic responsiveness of neocortical neurones, which occur after rhythmic stimuli within the frequency range of sleep spindles (10 Hz), were investigated in isolated neocortical slabs and intact cortex of anaesthetized cats by means of single, dual and triple simultaneous intracellular recordings in conjunction with recordings of local field potential responses. In isolated cortical slabs (10 mm long, 6 mm wide and 4-5 mm deep), augmenting responses to pulse-trains at 10 Hz (responses with growing amplitudes from the second stimulus in a train) were elicited only by relatively high-intensity stimuli. At low intensities, responses were decremental.

View Article and Find Full Text PDF