We introduce the domain wall color code, a new variant of the quantum error-correcting color code that exhibits exceptionally high code-capacity error thresholds for qubits subject to biased noise. In the infinite bias regime, a two-dimensional color code decouples into a series of repetition codes, resulting in an error-correcting threshold of 50%. Interestingly, at finite bias, our color code demonstrates thresholds identical to those of the noise-tailored XZZX surface code for all single-qubit Pauli noise channels.
View Article and Find Full Text PDFPreparing thermal states on a quantum computer can have a variety of applications, from simulating many-body quantum systems to training machine learning models. Variational circuits have been proposed for this task on near-term quantum computers, but several challenges remain, such as finding a scalable cost-function, avoiding the need of purification, and mitigating noise effects. We propose a new algorithm for thermal state preparation that tackles those three challenges by exploiting the noise of quantum circuits.
View Article and Find Full Text PDF