Baccatin III, an intermediate of Taxol biosynthesis and a useful precursor for semisynthesis of the anti-cancer drug, is produced in yew (Taxus) species by a sequence of 15 enzymatic steps from primary metabolism. Ten genes encoding enzymes of this extended pathway have been described, thereby permitting a preliminary attempt to reconstruct early steps of taxane diterpenoid (taxoid) metabolism in Saccharomyces cerevisiae as a microbial production host. Eight of these taxoid biosynthetic genes were functionally expressed in yeast from episomal vectors containing one or more gene cassettes incorporating various epitope tags to permit protein surveillance and differentiation of those pathway enzymes of similar size.
View Article and Find Full Text PDFTo maximize redox coupling efficiency with recombinant cytochrome P450 hydroxylases from yew (Taxus) species installed in yeast for the production of the anticancer drug Taxol, a cDNA encoding NADPH:cytochrome P450 reductase from T. cuspidata was isolated. This single-copy gene (2,154 bp encoding a protein of 717 amino acids) resembles more closely other reductases from gymnosperms (approximately 90% similarity) than those from angiosperms (<80% similarity).
View Article and Find Full Text PDF