Objectives: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is characterized by strategic white matter (WM) hyperintensities on MRI. Pathological features include WM degeneration, arteriolosclerosis, lacunar infarcts, and the deposition of granular osmiophilic material. Based on the hypothesis that the gliovascular unit is compromised, we assessed the nature of astrocyte damage in the deep WM of CADASIL subjects.
View Article and Find Full Text PDFNeuroimaging evidence from older stroke survivors in Nigeria and Northeast England showed medial temporal lobe atrophy (MTLA) to be independently associated with post-stroke cognitive impairment and dementia. Given the hypothesis ascribing MTLA to neurodegenerative processes, we assessed Alzheimer pathology in the hippocampal formation and entorhinal cortex of autopsied brains from of post-stroke demented and non-demented subjects in comparison with controls and other dementias. We quantified markers of amyloid β (total Aβ, Aβ-40, Aβ-42, and soluble Aβ) and hyperphosphorylated tau in the hippocampal formation and entorhinal cortex of 94 subjects consisting of normal controls ( = 12), vascular dementia, VaD (17), post-stroke demented, PSD ( = 15), and post-stroke non-demented, PSND ( = 23), Alzheimer's disease, AD ( = 14), and mixed AD and vascular dementia, AD_VAD ( = 13) using immunohistochemical techniques.
View Article and Find Full Text PDFBackground: This study was designed to explore the beneficial effects of environmental enrichment (EE) on white matter glial changes in a mouse model of chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS).
Methods: A total of 74 wild-type male C57BL/6J mice underwent BCAS or sham surgery. One week after surgery, the mice were randomly assigned into three different groups having varied amounts of EE-standard housing with no EE conditions (std), limited exposure with 3 h EE a day (3 h) and full-time exposure to EE (full) for 12 weeks.
White matter (WM) disintegration is common in the older population and is associated with vascular cognitive impairment (VCI). This study explored the effects of environmental enrichment (EE) on pathological sequelae in a mouse model of chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS). Male C57BL/6 J mice underwent BCAS or sham surgery.
View Article and Find Full Text PDFBoth the inflammatory potential and cognitive function decline during aging. The association between the repertoire of inflammatory biomarkers and cognitive decline is unclear. Inflammatory cytokines have been reported to be increased, decreased, or unchanged in the cerebrospinal fluid and sera of subjects with dementia.
View Article and Find Full Text PDFWhite matter hyperintensities as seen on brain T2-weighted magnetic resonance imaging are associated with varying degrees of cognitive dysfunction in stroke, cerebral small vessel disease and dementia. The pathophysiological mechanisms within the white matter accounting for cognitive dysfunction remain unclear. With the hypothesis that gliovascular interactions are impaired in subjects with high burdens of white matter hyperintensities, we performed clinicopathological studies in post-stroke survivors, who had exhibited greater frontal white matter hyperintensities volumes that predicted shorter time to dementia onset.
View Article and Find Full Text PDFAim: Brain clusterin is known to be associated with the amyloid-β deposits in Alzheimer's disease (AD). We assessed the distribution of clusterin immunoreactivity in cerebrovascular disorders, particularly focusing on white matter changes in small vessel diseases.
Methods: Post-mortem brain tissues from the frontal or temporal lobes of a total of 70 subjects with various disorders including cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), cerebral amyloid angiopathy (CAA) and AD were examined using immunohistochemistry and immunofluorescence.
We previously reported that, in the brains of older patients with vascular dementia (VaD), there is a distinctive accumulation of detergent-extractable soluble amyloid-β, with a predominance of Aβ42 species. It is unclear, however, if tau proteins also accumulate in the brains of older VaD subjects. Using antibody-specific immunoassays, we assessed concentrations of total tau (t-tau) and phosphorylated tau protein, measured at 3 phosphorylated sites (i.
View Article and Find Full Text PDFAims: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is identified by aggregates of NOTCH3 extracellular domain (N3ECD) along capillaries and the deposition of granular osmiophilic material (GOM). We assessed the pattern of distribution of pericytes in relation to N3ECD deposits in cerebral microvessels of CADASIL subjects.
Methods: We assessed post mortem brains from (n = 50) subjects with CADASIL, cerebral small vessel disease, and similar-age cognitively normal and older controls.
Dementia associated with cerebrovascular disease is common. It has been reported that ∼30% of elderly patients who survive stroke develop delayed dementia (post-stroke dementia), with most cases being diagnosed as vascular dementia. The pathological substrates associated with post-stroke or vascular dementia are poorly understood, particularly those associated with executive dysfunction.
View Article and Find Full Text PDFHippocampal atrophy is widely recognized in Alzheimer disease (AD). Whether neurons within hippocampal subfields are similarly affected in other aging-related dementias, particularly after stroke, remains an open question. We investigated hippocampal CA3 and CA4 pyramidal neuron volumes and densities using 3-dimensional stereologic techniques in postmortem samples from a total of 67 subjects: poststoke demented (PSD; n = 11), nondemented stroke survivors (PSND) and PSD patients from the CogFAST (Cognitive Function After Stroke) cohort (n = 13), elderly controls (n = 12), and subjects diagnosed as having vascular dementia (n = 11), AD (n = 10), and mixed AD and vascular dementia (n = 10).
View Article and Find Full Text PDFBackground: Magnetic resonance imaging indicates diffuse white matter (WM) changes are associated with cognitive impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We examined whether the distribution of axonal abnormalities is related to microvascular pathology in the underlying WM.
Methods: We used post-mortem brains from CADASIL subjects and similar age cognitively normal controls to examine WM axonal changes, microvascular pathology, and glial reaction in up to 16 different regions extending rostro-caudally through the cerebrum.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common form of familial brain arteriopathy, is associated with deposition of granular osmiophilic material (GOM). We used immunohistochemistry and immunogold electron microscopy (EM) to examine the distribution of GOM and NOTCH3 ectodomain (N3ECD) protein in microvasculature of brain gray matter and white matter in patients with CADASIL, non-CADASIL hereditary small-vessel disease and sporadic age-related degenerative disease, and comparable-age controls. We observed intense immunostaining patterns with 2 different anti-N3ECD antibodies in CADASIL but not in young and older controls or other small-vessel disease patients.
View Article and Find Full Text PDFWe quantified vascular changes in the frontal lobe and basal ganglia of four inherited small vessel diseases (SVDs) including cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), pontine autosomal dominant microangiopathy and leukoencephalopathy (PADMAL), hereditary multi-infarct dementia of Swedish type (Swedish hMID), and hereditary endotheliopathy with retinopathy, nephropathy, and stroke (HERNS). Vascular pathology was most severe in CADASIL, and varied with marginally greater severity in the basal ganglia compared to the frontal lobe. The overall sclerotic index values in frontal lobe were in the order CADASIL ≥ HERNS > PADMAL > Swedish hMID > sporadic SVD, and in basal ganglia CADASIL > HERNS > Swedish hMID > PADMAL> sporadic SVD.
View Article and Find Full Text PDFBackground And Purpose: We have previously shown delayed poststroke dementia in elderly (≥75 years old) stroke survivors is associated with medial temporal lobe atrophy; however, the basis of the structural and functional changes is unknown.
Methods: Using 3-dimensional stereological methods, we quantified hippocampal pyramidal neuronal volumes and densities in a total of 95 postmortem samples from demented and nondemented poststroke survivors within our prospective Cognitive Function after Stroke study and subjects pathologically diagnosed with vascular dementia, Alzheimer disease, and mixed Alzheimer disease and vascular dementia syndrome.
Results: Hippocampal CA1 but not CA2 subfield neuron density was affected in poststroke, Alzheimer disease, vascular dementia, and mixed dementia groups relative to control subjects (P<0.
Previous imaging and morphometric studies have identified volumetric and cellular abnormalities in prefrontal areas in late-life depression. This study aimed to examine cellular morphology using stereological methodology in the supragenual region of the anterior cingulate cortex in late-life depressed patients compared with age-matched controls. Post-mortem tissue was acquired from nine patients with depression and 11 control patients and analyzed using the optical disector and nucleator methods.
View Article and Find Full Text PDFObjective: To assess glial and neuronal density and neuronal volume in two areas of the caudate nucleus in late-life major depression.
Design: A postmortem study using the disector and nucleator methods to estimate neuronal density and volume and glial density of cells from human brain tissue from the anterior portion (dorsolateral and ventromedial aspects) of the caudate nucleus.
Setting: Brain tissues were obtained from the Newcastle Brain Tissue Resource at Newcastle University, UK.
Background: The orbitofrontal cortex has been implicated as a key component in depression by several imaging studies. This study aims to examine morphometrically glial cell and neuronal density and neuronal volume in the orbitofrontal cortex of late-life major depression patients.
Methods: Post mortem tissue from 13 patients with major depression and 11 matched controls was obtained and analyzed using the optical disector and nucleator methods.
The aim of this study was to characterize myelin loss as one of the features of white matter abnormalities across three common dementing disorders. We evaluated post-mortem brain tissue from frontal and temporal lobes from 20 vascular dementia (VaD), 19 Alzheimer's disease (AD) and 31 dementia with Lewy bodies (DLB) cases and 12 comparable age controls. Images of sections stained with conventional luxol fast blue were analysed to estimate myelin attenuation by optical density.
View Article and Find Full Text PDFBackground: Late-life depression has been associated with cerebrovascular disease and especially with ischaemic white matter hyperintensities on magnetic resonance imaging. Neuroimaging and morphometric studies have identified abnormalities in the dorsolateral prefrontal cortex.
Aims: To examine glial and neuronal density and neuronal volume in the dorsolateral prefrontal cortex in late-life major depression.
The Dorsal Motor Nucleus of Vagus (DMV) is degenerated in many patients with early stage Lewy Body Diseases (LBD). Many patients with LBD also develop symptomatic autonomic dysfunction prior to motor and cognitive symptoms. The DMV, along with the Nucleus Ambiguous (NA) and Raphe Obscurus (RO) regulates a variety of autonomic reflexes, suggesting that there may be an association between the degree of neurodegenerative protein aggregation in the DMV and symptomatic autonomic dysfunction in patients with LBD.
View Article and Find Full Text PDFBackground And Purpose: White matter (WM) hyperintensities on MRI or leukoaraiosis is characteristic of stroke syndromes. Increased MRI signals in the anterior temporal pole are suggested to be diagnostic for cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), with 90% sensitivity and 100% specificity. The structural correlates of these specific WM hyperintensities seen on T2-weighted and FLAIR sequences in the temporal pole of CADASIL are unclear.
View Article and Find Full Text PDFBackground And Purpose: Previous evidence from MRI and acetylcholinesterase histochemistry suggests cholinergic fibers are affected in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL).
Methods: As a measure of cholinergic function, we assessed choline acetyltransferase (ChAT) activities in the frontal and temporal neocortices and the immunocytochemical distribution of ChAT and p75 neurotrophin receptor (P75(NTR)) by in vitro imaging in the nucleus basalis of Meynert of CADASIL subjects.
Results: ChAT activities were significantly reduced by 60% to 70% in frontal and temporal cortices of CADASIL cases, as were ChAT and P75(NTR) immunoreactivities in the nucleus basalis.
Objective: To examine the relationship of the anatomic distribution of amyloid deposition to focal and global cognitive dysfunction in different subtypes of dementia.
Methods: We quantified AB40 and AB42 in the temporal lobe and entorhinal cortex and examined their relationship to cognitive functions in Alzheimer's disease (AD), vascular dementia (VaD) and dementia with Lewy bodies (DLB).
Results: We found a correlation between memory impairment, but not global cognitive impairment, and amyloid load in these areas in AD and VaD but not in DLB.