Publications by authors named "Arthur N Wilkinson"

In this research study, three carbon fillers of varying dimensionality in the form of graphite (3D), graphite nano-platelets (2D), and multiwall carbon nanotubes (1D) were incorporated into a matrix of poly (ethylene terephthalate), forming carbon-reinforced polymer composites. Melt compounding was followed by compression moulding and then a quenching process for some of the samples to inhibit crystallization. The samples were analysed using dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM), considering the dimensionality and loading of the carbon fillers.

View Article and Find Full Text PDF

The aim of this work was to improve the processability of triglycidyl--aminophenol (TGPAP) epoxy resin. To achieve this improvement, a diluent, the diglycidyl ether of bisphenol F (DGEBF or BPF), was added to TGPAP, and the blended epoxy was then cured with 4, 4'-diaminodiphenyl sulfones (DDS). A response surface methodology (RSM) was used, with the target response being to achieve a blended resin with a high glass transition temperature (T) and maximum pot life (or processing window, PW).

View Article and Find Full Text PDF

Poly(ethylene terephthalate)/graphite (PET/G) micro-composites were fabricated by the melt compounding method using a minilab extruder. The carbon fillers were found to act as nucleating agents for the PET matrix and hence accelerated crystallization and increased the degree of crystallinity. TGA showed that carbon fillers improved the resistance to thermal and thermo-oxidative degradation under both air and nitrogen atmospheres.

View Article and Find Full Text PDF

All-cellulose nanocomposites, comprising two different forms of cellulose nanowhiskers dispersed in two different matrix systems, are produced. Acid hydrolysis of both tunicate (T-CNWs) and cotton cellulose (CNWs) is carried out to produce the nanowhiskers. These nanowhiskers are then dispersed in a cellulose matrix material, produced using two dissolution methods; namely lithium chloride/N,N-dimethyl acetamide (LiCl/DMAc) and sodium hydroxide/urea (NaOH/urea).

View Article and Find Full Text PDF

Orientation of cellulose nanowhiskers (CNWs) derived from tunicates, in an all-cellulose nanocomposite, is achieved through the application of a magnetic field. CNWs are incorporated into a dissolved cellulose matrix system and during solvent casting of the nanocomposite a magnetic field is applied to induce their alignment. Unoriented CNW samples, without the presence of a magnetic field, are also produced.

View Article and Find Full Text PDF

Interactions between sodium montmorillonite (Na-MMT) and a variety of probes, some of which are intended to model components of a polyurethane system, have been studied. Particular attention was given to the effect of preadsorbed water on the adsorption behavior of the probes. Flow microcalorimetry (FMC), diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS), and wide-angle X-ray scattering (WAXS) were used to monitor the adsorption process.

View Article and Find Full Text PDF