Publications by authors named "Arthur Moser"

Background: Robotic surgery may improve surgical performance during minimally invasive pancreatoduodenectomy as compared to 3D- and 2D-laparoscopy but comparative studies are lacking. This study assessed the impact of robotic surgery versus 3D- and 2D-laparoscopy on surgical performance and operative time using a standardized biotissue model for pancreatico- and hepatico-jejunostomy using pooled data from two randomized controlled crossover trials (RCTs).

Methods: Pooled analysis of data from two RCTs with 60 participants (36 surgeons, 24 residents) from 11 countries (December 2017-July 2019) was conducted.

View Article and Find Full Text PDF

Background: Body composition is associated with mortality; however its routine assessment is too time-consuming.

Purpose: To demonstrate the value of artificial intelligence (AI) to extract body composition measures from routine studies, we aimed to develop a fully automated AI approach to measure fat and muscles masses, to validate its clinical discriminatory value, and to provide the code, training data and workflow solutions to facilitate its integration into local practice.

Methods: We developed a neural network that quantified the tissue components at the L3 vertebral body level using data from the Liver Tumor Challenge (LiTS) and a pancreatic cancer cohort.

View Article and Find Full Text PDF

Background: We tested the added value of 3D-vision on procedure time and surgical performance during robotic pancreatoduodenectomy anastomoses in biotissue. Robotic surgery has the advantage of articulating instruments and 3D-vision. Consensus is lacking on the added value of 3D-vision during laparoscopic surgery.

View Article and Find Full Text PDF

Background: Patients undergoing pancreatic resection frequently require rehabilitation facilities after hospital discharge. We evaluated the predictive role of validated markers of frailty on rehabilitation facility placement to identify patients who may require this service.

Methods: Single-center retrospective cohort study of patients who underwent pancreatic resection from 2010 to 2015.

View Article and Find Full Text PDF

Importance: Quality assessment is an important instrument to ensure optimal surgical outcomes, particularly during the adoption of new surgical technology. The use of the robotic platform for complex pancreatic resections, such as the pancreaticoduodenectomy, requires close monitoring of outcomes during its implementation phase to ensure patient safety is maintained and the learning curve identified.

Objective: To report the results of a quality analysis and learning curve during the implementation of robotic pancreaticoduodenectomy (RPD).

View Article and Find Full Text PDF

Many of the beneficial and adverse effects of niacin are mediated via a G protein receptor, G protein-coupled receptor 109A/hydroxycarboxylic acid 2 receptor (GPR109A/HCA2), which is highly expressed in adipose tissue and macrophages. Here we demonstrate that immune activation increases GPR109A/HCA2 expression. Lipopolysaccharide (LPS), TNF, and interleukin (IL) 1 increase GPR109A/HCA2 expression 3- to 5-fold in adipose tissue.

View Article and Find Full Text PDF

Background: Treatment of pancreatic adenocarcinoma in the elderly is often complicated by comorbidities that preclude surgery, chemotherapy and/or conventional external beam radiation therapy (EBRT). Stereotactic body radiotherapy (SBRT) has thus garnered interest in this setting.

Methods: A retrospective review of 26 patients of age ≥ 80 with pancreatic adenocarcinoma treated with definitive SBRT+/-chemotherapy from 2007-2011 was performed.

View Article and Find Full Text PDF

LPS treatment of macrophages induces TG accumulation, which is accentuated by TG-rich lipoproteins or FFA. We defined pathways altered during macrophage activation that contribute to TG accumulation. Glucose uptake increased with activation, accompanied by increased GLUT1.

View Article and Find Full Text PDF

Angiopoietin like protein 4 (ANGPTL4) inhibits lipoprotein lipase (LPL) activity. Previous studies have shown that Toll-like Receptor (TLR) activation increases serum levels of ANGPTL4 and expression of ANGPTL4 in liver, heart, muscle, and adipose tissue in mice. ANGPTL4 is expressed in macrophages and is induced by inflammatory saturated fatty acids.

View Article and Find Full Text PDF

The acute phase response (APR) produces marked alterations in lipid and carbohydrate metabolism including decreasing plasma ketone levels. Fibroblast growth factor 21 (FGF21) is a recently discovered hormone that regulates lipid and glucose metabolism and stimulates ketogenesis. Here we demonstrate that lipopolysaccharide (LPS), zymosan, and turpentine, which induce the APR, increase serum FGF21 levels 2-fold.

View Article and Find Full Text PDF

Objective And Design: The aim of this study was to examine the expression of G protein-coupled receptor 81 (GPR81) in mouse adipose tissue in response to inflammatory stimuli. GPR81 is activated by lactate resulting in the inhibition of lipolysis.

Materials And Treatment: Mice were injected with saline, lipopolysaccharide (LPS), zymosan, or turpentine, N = 5 per group.

View Article and Find Full Text PDF

Inhibition of adipocyte triglyceride biosynthesis is required for fatty acid mobilization during inflammation. Triglyceride biosynthesis requires glycerol 3-phosphate and phosphoenolpyruvate carboxykinase (PEPCK) plays a key role. We demonstrate that LPS, zymosan, and TNF-α decrease PEPCK in liver and fat.

View Article and Find Full Text PDF

Background: Stereotactic body radiotherapy (SBRT) has been approved for the treatment of locally advanced pancreatic cancer. Placement of gold fiducials is required for real-time tracking and delivery of a high-dose therapeutic beam of radiation to the tumor. Traditionally, fiducials have been placed either intraoperatively or percutaneously.

View Article and Find Full Text PDF

Carbohydrate response element binding protein (ChREBP) is a recently discovered transcription factor whose levels and activity are increased by glucose leading to the activation of target genes, which include acetyl-CoA carboxylase, fatty acid synthase, and liver-type pyruvate kinase. Here, we demonstrate that lipopolysaccharide (LPS) treatment causes a marked decrease in ChREBP mRNA and protein levels in the liver of mice fed a normal chow diet or in mice fasted for 24 h and then re-fed a high carbohydrate diet. This decrease occurs rapidly and is a sensitive response (half-maximal dose 0.

View Article and Find Full Text PDF

The acute phase response is characterized by elevations in serum triglyceride levels due to both an increase in hepatic VLDL production and a delay in the clearance of triglyceride rich lipoproteins secondary to a decrease in lipoprotein lipase (LPL) activity. Recently there has been a marked increase in our understanding of factors that regulate LPL activity. GPIHBP1 facilitates the interaction of LPL and lipoproteins thereby allowing lipolysis to occur.

View Article and Find Full Text PDF

Respiratory failure is a major cause of mortality during septic shock and is due in part to decreased ventilatory muscle contraction. Ventilatory muscles have high energy demands; fatty acid (FA) oxidation is an important source of ATP. FA oxidation is regulated by nuclear hormone receptors; studies have shown that the expression of these receptors is decreased in liver, heart, and kidney during sepsis.

View Article and Find Full Text PDF

Pancreatic and biliary cancers are relatively resistant to chemotherapy and radiation and may therefore provide an opportunity for testing the potential of immunotherapy. MUC1 is an epithelial cell glycoprotein that is highly overexpressed and aberrantly glycosylated in many adenocarcinomas, including pancreatic tumors, providing a tumor specific antigen and target. We performed a Phase I/II clinical trial of a MUC1 peptide-loaded DC vaccine in 12 pancreatic and biliary cancer patients following resection of their primary tumors.

View Article and Find Full Text PDF

Infection and inflammation affect adipose triglyceride metabolism, resulting in increased plasma free fatty acid (FFA) and VLDL levels during the acute-phase response. Lipin-1, a multifunctional protein, plays a critical role in adipose differentiation, mitochondrial oxidation, and triglyceride synthesis. Here, we examined whether LPS [a Toll-like receptor (TLR)-4 activator], zymosan (a TLR-2 activator), and proinflammatory cytokines regulate lipin-1 in adipose tissue.

View Article and Find Full Text PDF

Inflammation induces marked changes in lipid and lipoprotein metabolism. Proprotein convertase subtilisin kexin 9 (PCSK9) plays an important role in regulating LDL receptor degradation. Here, we demonstrate that LPS decreases hepatic LDL receptor protein but at the same time hepatic LDL receptor mRNA levels are not decreased.

View Article and Find Full Text PDF

Inflammation produces marked changes in lipid metabolism, including increased serum fatty acids (FAs) and triglycerides (TGs), increased hepatic TG production and VLDL secretion, increased adipose tissue lipolysis, and decreased FA oxidation in liver and heart. Lipopolysaccharide (LPS) also increases TG and cholesteryl ester levels in kidneys. Here we confirm these findings and define potential mechanisms.

View Article and Find Full Text PDF

Inflammation can produce abnormalities that could increase the risk for atherosclerosis including alterations in lipid and lipoprotein metabolism. Apolipoprotein M is a recently described HDL-associated apoprotein expressed mainly in the liver and kidney with protective effects against atherosclerosis. In this study, we describe the regulation of apolipoprotein M during the acute phase response.

View Article and Find Full Text PDF

Phospholipid scramblase 1 (PLSCR1) is a member of PLSCR gene family that has been implicated in multiple cellular processes including movement of phospholipids, gene regulation, immuno-activation, and cell proliferation/apoptosis. In the present study, we identified PLSCR1 as a positive intracellular acute phase protein that is upregulated by LPS in liver, heart, and adipose tissue, but not skeletal muscle. LPS administration resulted in a marked increase in PLSCR1 mRNA and protein levels in the liver.

View Article and Find Full Text PDF

During the acute phase response, cytokines induce marked alterations in lipid metabolism including an increase in serum triglyceride levels and a decrease in hepatic fatty acid oxidation, in bile acid synthesis, and in high-density lipoprotein levels. Here we demonstrate that tumor necrosis factor (TNF) and interleukin 1 (IL-1), but not IL-6, decrease the expression of retinoid X receptor alpha (RXRalpha), peroxisome proliferator-activated receptor alpha (PPARalpha), PPARgamma, liver X receptor alpha (LXRalpha), and coactivators PPARgamma coactivator 1alpha (PGC-1alpha), PGC-1beta, and steroid receptor coactivator 1 (SRC-1) in Hep3B human hepatoma cells. In addition, treatment of mice with TNF and IL-1 also decreased RXRalpha, PPARalpha, PPARgamma, LXRalpha, and PGC-1alpha messenger RNA (mRNA) levels in the liver.

View Article and Find Full Text PDF

Oxidized cholesterol is present in significant quantities in the typical Western diet. When ingested, oxidized cholesterol is absorbed by the small intestine and incorporated into both chylomicrons and LDL, resulting in LDL that is more susceptible to further oxidation. Feeding studies in animal models and epidemiological studies in humans have suggested that oxidized cholesterol in the diet increases the development of atherosclerosis.

View Article and Find Full Text PDF

The acute-phase response (APR) leads to alterations in lipid metabolism and type II nuclear hormone receptors, which regulate lipid metabolism, are suppressed, in liver, heart, and kidney. Here, we examine the effect of the APR in adipose tissue. In mice, lipopolysaccharide produces a rapid, marked decrease in mRNA levels of nuclear hormone receptors [peroxisome proliferator-activated receptor gamma (PPARgamma), liver X receptor alpha (LXRalpha) and LXRbeta, thyroid receptor alpha (TRalpha) and TRbeta, and retinoid X receptor alpha (RXRalpha) and RXRbeta] and receptor coactivators [cAMP response element binding protein, steroid receptor coactivator 1 (SRC1) and SRC2, thyroid hormone receptor-associated protein, and peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC1alpha) and PGC1beta] along with decreased expression of target genes (adipocyte P2, phosphoenolpyruvate carboxykinase, glycerol-3-phosphate acyltransferase, ABCA1, apolipoprotein E, sterol-regulatory element binding protein-1c, glucose transport protein 4 (GLUT4), malic enzyme, and Spot14) involved in triglyceride (TG) and carbohydrate metabolism.

View Article and Find Full Text PDF