Publications by authors named "Arthur Millius"

Many mammalian proteins have circadian cycles of production and degradation, and many of these rhythms are altered posttranscriptionally. We used ribosome profiling to examine posttranscriptional control of circadian rhythms by quantifying RNA translation in the liver over a 24-h period from circadian-entrained mice transferred to constant darkness conditions and by comparing ribosome binding levels to protein levels for 16 circadian proteins. We observed large differences in ribosome binding levels compared to protein levels, and we observed delays between peak ribosome binding and peak protein abundance.

View Article and Find Full Text PDF

The RNA-binding protein (RBP) Regnase-1 is an endonuclease that regulates immune responses by modulating target mRNA stability. Regnase-1 degrades a group of inflammation-associated mRNAs, which contributes to a balanced immune response and helps prevent autoimmune diseases. Regnase-1 also cleaves its own mRNA by binding stem-loop (SL) RNA structures in its 3'UTR.

View Article and Find Full Text PDF

Since Ronald Konopka and Seymour Benzer's discovery of the gene in the 1970s, the circadian rhythm field has diligently investigated regulatory mechanisms and intracellular transcriptional and translation feedback loops involving , and these investigations culminated in a 2017 Nobel Prize in Physiology or Medicine for Michael W. Young, Michael Rosbash, and Jeffrey C. Hall.

View Article and Find Full Text PDF

A systems approach to studying biology uses a variety of mathematical, computational, and engineering tools to holistically understand and model properties of cells, tissues, and organisms. Building from early biochemical, genetic, and physiological studies, systems biology became established through the development of genome-wide methods, high-throughput procedures, modern computational processing power, and bioinformatics. Here, we highlight a variety of systems approaches to the study of biological rhythms that occur with a 24-h period-circadian rhythms.

View Article and Find Full Text PDF

The SCAR/WAVE complex drives lamellipodium formation by enhancing actin nucleation by the Arp2/3 complex. Phosphoinositides and Rac activate the SCAR/WAVE complex, but how SCAR/WAVE and Arp2/3 complexes converge at sites of nucleation is unknown. We analyzed the single-molecule dynamics of WAVE2 and p40 (subunits of the SCAR/WAVE and Arp2/3 complexes, respectively) in XTC cells.

View Article and Find Full Text PDF

Many cells undergo directed cell migration in response to external cues in a process known as chemotaxis. This ability is essential for many single-celled organisms to hunt and mate, the development of multicellular organisms, and the functioning of the immune system. Because of their relative ease of manipulation and their robust chemotactic abilities, the neutrophil-like cell line (HL-60) has been a powerful system to analyze directed cell migration.

View Article and Find Full Text PDF

How cells generate a single axis of polarity for mating, division, and movement is unknown. In this issue, Howell et al. (2009) use a synthetic biology approach to demonstrate that rapid competition for a soluble signaling component (Bem1) is essential to ensure a unique axis of polarity in budding yeast.

View Article and Find Full Text PDF

Asymmetric localization of intracellular proteins and signals directs movement during axon guidance, endothelial cell invasion, and immune cell migration. In these processes, cell movement is guided by external chemical cues in a process known as chemotaxis. In particular, leukocyte migration in the innate immune system has been studied in the human neutrophil-like cell line (HL-60).

View Article and Find Full Text PDF

Asymmetric intracellular signals enable cells to migrate in response to external cues. The multiprotein WAVE (also known as SCAR or WASF) complex activates the actin-nucleating Arp2/3 complex [1-4] and localizes to propagating "waves," which direct actin assembly during neutrophil migration [5, 6]. Here, we observe similar WAVE complex dynamics in other mammalian cells and analyze WAVE complex dynamics during establishment of neutrophil polarity.

View Article and Find Full Text PDF

Genetic evidence suggests that indole-3-butyric acid (IBA) is converted to the active auxin indole-3-acetic acid (IAA) by removal of two side-chain methylene units in a process similar to fatty acid beta-oxidation. Previous studies implicate peroxisomes as the site of IBA metabolism, although the enzymes that act in this process are still being identified. Here, we describe two IBA-response mutants, ibr1 and ibr10.

View Article and Find Full Text PDF

Indole-3-butyric acid (IBA) is an endogenous auxin used to enhance rooting during propagation. To better understand the role of IBA, we isolated Arabidopsis IBA-response (ibr) mutants that display enhanced root elongation on inhibitory IBA concentrations but maintain wild-type responses to indole-3-acetic acid, the principle active auxin. A subset of ibr mutants remains sensitive to the stimulatory effects of IBA on lateral root initiation.

View Article and Find Full Text PDF