Publications by authors named "Arthur Michaut"

Recent advances in the field of mechanobiology have led to the development of methods to characterise single-cell or monolayer mechanical properties and link them to their functional behaviour. However, there remains a strong need to establish this link for three-dimensional (3D) multicellular aggregates, which better mimic tissue function. Here we present a platform to actuate and observe many such aggregates within one deformable micro-device.

View Article and Find Full Text PDF

Developmental morphogenesis is driven by tissue stresses acting on tissue rheology. Direct measurements of forces in small tissues (100 µm-1 mm) in situ, such as in early embryos, require high spatial precision and minimal invasiveness. Here, we introduce a control-based approach, tissue force microscopy (TiFM), that integrates a mechanical cantilever probe and live imaging with closed-loop feedback control of mechanical loading in early chicken embryos.

View Article and Find Full Text PDF

During embryonic development, digits gradually emerge in a periodic pattern. Although genetic evidence indicates that digit formation results from a self-organizing process, the underlying mechanisms are still unclear. Here, we find that convergent-extension tissue flows driven by active stresses underlie digit formation.

View Article and Find Full Text PDF

In classical descriptions of vertebrate development, the segregation of the three embryonic germ layers completes by the end of gastrulation. Body formation then proceeds in a head to tail fashion by progressive deposition of lineage-committed progenitors during regression of the primitive streak (PS) and tail bud (TB). The identification by retrospective clonal analysis of a population of neuromesodermal progenitors (NMPs) contributing to both musculoskeletal precursors (paraxial mesoderm) and spinal cord during axis formation challenged these notions.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in various scientific fields have reignited interest in how mechanical and biochemical interactions contribute to the organization of cells and tissues.
  • New technologies in microscopy and computational analysis allow for better observation and understanding of patterns related to signaling and force generation in living systems.
  • This roadmap presents diverse case studies exploring the dynamic relationship between mechanics and biochemistry, emphasizing its role in shaping organismal development through various processes across different scales and organisms.
View Article and Find Full Text PDF
Article Synopsis
  • The formation of vertebrate embryos involves the addition of tissues from the tail bud, driven by cells exhibiting high levels of aerobic glycolysis similar to cancer cells (the Warburg effect).
  • Glycolytic activity influenced by fibroblast growth factor regulates WNT signaling in the tail bud, promoting mesodermal development over neural fate, essential for growth and elongation.
  • Research using chicken embryos and human cells shows that this glycolysis creates an inverted pH gradient that favors environments for β-catenin acetylation, activating mesodermal genes and supporting the idea that some cancer cells revert to a developmental metabolic state.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how the spine develops in humans and mice, focusing on a special process in cells called the segmentation clock.
  • They found that although human and mouse cells have different timing for this process, they still follow a similar pattern and are influenced by the same signals.
  • This research helps us understand more about human development and how it might be similar to what happens in mice.
View Article and Find Full Text PDF

The vertebrate anteroposterior axis forms through elongation of multiple tissues during embryogenesis. This process is based on tissue-autonomous mechanisms of force generation and intertissue mechanical coupling whose failure leads to severe developmental anomalies such as body truncation and spina bifida. Similar to other morphogenetic modules, anteroposterior body extension requires both the rearrangement of existing materials-such as cells and extracellular matrix-and the local addition of new materials, i.

View Article and Find Full Text PDF

Fluid compartmentalization by microencapsulation is important in scenarios where protection or controlled release of encapsulated species, or isolation of chemical transformations is the central concern. Realizing responsive encapsulation systems by incorporating functional nanomaterials is of particular interest. We report here on the development of graphene oxide microcapsules enabled by a single-step microfluidic process.

View Article and Find Full Text PDF

The early days: although considered a species to be avoided in peptide chemistry, the intermediacy of 5(4H)-oxazolones is demonstrated to be essential for the formation of peptides through cyanamide and carbodiimide activation in aqueous solution.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmrkgce477nn77uikderaf49cd1enukum): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once