New technologies, such as biosensors and lab-on-a-chip, are reducing time consumption and costs for the detection and characterization of biological cells. One challenge is to detect and characterize cells and bacteria one by one or at a very low concentration. In this case, measurements have very low variations that can be difficult to detect.
View Article and Find Full Text PDFThis paper proposes a simple approach to optimize the operating frequency band of a lab-on-a-chip based on bio-impedance cytometry for a single cell. It mainly concerns applications in low-conductivity media. Bio-impedance allows for the characterization of low cell concentration or single cells by providing an electrical signature.
View Article and Find Full Text PDFThe limit of detection of a biological sensor is an important parameter because, when it is optimized, it allows the detection of a reduced number of biological cells and the reduction of the detection time. This parameter can be improved upon with a reduction in electrode size, but the rate of detection is similarly reduced as well. To avoid this problem, we propose a sensor matrix composed of 20 × 20 µm² coplanar square electrodes with a standard clean room manufacturing process.
View Article and Find Full Text PDF