Background: Stroke-induced transient immune suppression is believed to contribute to post-stroke infections. The β-adrenergic receptor antagonist, propranolol, has been shown to prevent stroke-associated pneumonia (SAP) via reversing post-stroke immunosuppression in preclinical studies and in retrospective analysis in stroke patients. However, whether propranolol can reduce the risk of SAP has not been tested in prospective, randomised controlled trials.
View Article and Find Full Text PDFAim: Hyperlipidemia is a common comorbidity of stroke patients, elucidating the mechanism that underlies the exacerbated ischemic brain injury after stroke with hyperlipidemia is emerging as a significant clinical problem due to the growing proportion of hyperlipidemic stroke patients.
Methods: Mice were fed a high-fat diet for 12 weeks to induce hyperlipidemia. Transient middle cerebral artery occlusion was induced as a mouse model of ischemic stroke.
Background: The discrepancy between experimental research and clinical trial outcomes is a persistent challenge in preclinical studies, particularly in stroke research. A possible factor contributing to this issue is the lack of standardization across experimental stroke models, leading to poor reproducibility in multicenter studies. This study addresses this gap by aiming to enhance reproducibility and the efficacy of multicenter studies through the harmonization of protocols and training of involved personnel.
View Article and Find Full Text PDFBackground: Microglial activation is one hallmark of Alzheimer disease (AD) neuropathology but the impact of the regional interplay of microglia cells in the brain is poorly understood. We hypothesized that microglial activation is regionally synchronized in the healthy brain but experiences regional desynchronization with ongoing neurodegenerative disease. We addressed the existence of a microglia connectome and investigated microglial desynchronization as an AD biomarker.
View Article and Find Full Text PDFCardiovasc Res
August 2024
The importance of the brain-heart interaction has been increasingly recognized as a critical physiological axis that is altered in disease. In this review, we explore the intricate relationship between the central nervous system and cardiovascular health, focusing particularly on immunological mechanisms that influence the course of both neurological and cardiovascular diseases. While previous studies have established a key role of the autonomic nervous system in linking brain and the heart, more recent studies have expanded our understanding of the multifaceted inter-organ interactions.
View Article and Find Full Text PDFAim: To explore the regulatory mechanisms of microglia-mediated cytotoxic CD8 T-cell infiltration in the white matter injury of perioperative stroke (PIS).
Methods: Adult male C57BL/6 mice were subjected to ileocolic bowel resection (ICR) 24 h prior to permanent distant middle cerebral artery occlusion (dMCAO) to establish model PIS. White matter injury, functional outcomes, peripheral immune cell infiltration, and microglia phenotype were assessed up to 28 days after dMCAO using behavioral phenotyping, immunofluorescence staining, transmission electron microscopy, western blot, and FACS analysis.
Age-related myelin damage induces inflammatory responses, yet its involvement in Alzheimer's disease remains uncertain, despite age being a major risk factor. Using a mouse model of Alzheimer's disease, we found that amyloidosis itself triggers age-related oligodendrocyte and myelin damage. Mechanistically, CD8 T cells promote the progressive accumulation of abnormally interferon-activated microglia that display myelin-damaging activity.
View Article and Find Full Text PDFNeuronal activity is accompanied by a net outflow of potassium ions (K) from the intra- to the extracellular space. While extracellular [K] changes during neuronal activity are well characterized, intracellular dynamics have been less well investigated due to lack of respective probes. In the current study we characterized the FRET-based K biosensor lc-LysM GEPII 1.
View Article and Find Full Text PDFStroke is the main cause for acquired disabilities. Pharmaceutical or mechanical removal of the thrombus is the cornerstone of stroke treatment but can only be administered to a subset of patients and within a narrow time window. Novel treatment options are therefore required.
View Article and Find Full Text PDFIncomplete reperfusion of the microvasculature ('no-reflow') after ischaemic stroke damages salvageable brain tissue. Previous ex vivo studies suggest pericytes are vulnerable to ischaemia and may exacerbate no-reflow, but the viability of pericytes and their association with no-reflow remains under-explored in vivo. Using longitudinal in vivo two-photon single-cell imaging over 7 days, we showed that 87% of pericytes constrict during cerebral ischaemia and remain constricted post reperfusion, and 50% of the pericyte population are acutely damaged.
View Article and Find Full Text PDFIschemic stroke is a major global health issue and characterized by acute vascular dysfunction and subsequent neuroinflammation. However, the relationship between these processes remains elusive. In the current study, we investigated whether alleviating vascular dysfunction by restoring vascular nitric oxide (NO) reduces post-stroke inflammation.
View Article and Find Full Text PDFSci Transl Med
November 2023
Regulatory T cells exert a beneficial immunomodulatory effect on poststroke neuroinflammation that is amplified by microglial cells.
View Article and Find Full Text PDFSemin Immunopathol
May 2023
Ischemic stroke profoundly influences the peripheral immune system, which responds quickly to brain ischemia and participates in the evolution of poststroke neuroinflammation, while a period of systemic immunosuppression ensues. Poststroke immunosuppression brings harmful consequences, including increased infection rates and escalated death. As the most abundant cell population in the fast-responding innate immune system, myeloid cells including neutrophils and monocytes play an indispensable role in systemic immunosuppression after stroke.
View Article and Find Full Text PDFNeuroinflammation after stroke is characterized by the activation of resident microglia and the invasion of circulating leukocytes into the brain. Although lymphocytes infiltrate the brain in small number, they have been consistently demonstrated to be the most potent leukocyte subpopulation contributing to secondary inflammatory brain injury. However, the exact mechanism of how this minimal number of lymphocytes can profoundly affect stroke outcome is still largely elusive.
View Article and Find Full Text PDFNeurol Res Pract
November 2022
The gut contains the largest reservoir of microorganisms of the human body, termed as the gut microbiota which emerges as a key pathophysiological factor in health and disease. The gut microbiota has been demonstrated to influence various brain functions along the "gut-brain axis". Stroke leads to intestinal dysmotility and leakiness of the intestinal barrier which are associated with change of the gut microbiota composition and its interaction with the human host.
View Article and Find Full Text PDFA hallmark of nervous system aging is a decline of white matter volume and function, but the underlying mechanisms leading to white matter pathology are unknown. In the present study, we found age-related alterations of oligodendrocyte cell state with a reduction in total oligodendrocyte density in aging murine white matter. Using single-cell RNA-sequencing, we identified interferon (IFN)-responsive oligodendrocytes, which localize in proximity to CD8 T cells in aging white matter.
View Article and Find Full Text PDF