Antibody-oligonucleotide conjugates (AOCs) are promising treatments for Duchenne muscular dystrophy (DMD). They work via induction of exon skipping and restoration of dystrophin protein in skeletal and heart muscles. The structure-activity relationships (SARs) of AOCs comprising antibody-phosphorodiamidate morpholino oligomers (PMOs) depend on several aspects of their component parts.
View Article and Find Full Text PDFAntibody-oligonucleotide conjugates are a promising class of therapeutics for extrahepatic delivery of small interfering ribonucleic acids (siRNAs). These conjugates can be optimized for improved delivery and mRNA knockdown (KD) through understanding of structure-activity relationships. In this study, we systematically examined factors including antibody isotype, siRNA chemistry, linkers, conjugation chemistry, PEGylation, and drug-to-antibody ratios (DARs) for their impact on bioconjugation, pharmacokinetics (PK), siRNA delivery, and bioactivity.
View Article and Find Full Text PDFAlthough targeting TfR1 to deliver oligonucleotides to skeletal muscle has been demonstrated in rodents, effectiveness and pharmacokinetic/pharmacodynamic (PKPD) properties remained unknown in higher species. We developed antibody-oligonucleotide conjugates (AOCs) towards mice or monkeys utilizing anti-TfR1 monoclonal antibodies (αTfR1) conjugated to various classes of oligonucleotides (siRNA, ASOs and PMOs). αTfR1 AOCs delivered oligonucleotides to muscle tissue in both species.
View Article and Find Full Text PDFAims: Cardiac microRNA-132-3p (miR-132) levels are increased in patients with heart failure (HF) and mechanistically drive cardiac remodelling processes. CDR132L, a specific antisense oligonucleotide, is a first-in-class miR-132 inhibitor that attenuates and even reverses HF in preclinical models. The aim of the current clinical Phase 1b study was to assess safety, pharmacokinetics, target engagement, and exploratory pharmacodynamic effects of CDR132L in patients on standard-of-care therapy for chronic ischaemic HF in a randomized, placebo-controlled, double-blind, dose-escalation study (NCT04045405).
View Article and Find Full Text PDFThe species sensitivity and mechanism of complement pathway activation by a phosphorothioate oligonucleotide were investigated in monkey and human serum. Increasing concentrations of a phosphorothioate oligonucleotide, ISIS 2302, were incubated in either monkey or human serum. Complement activation in monkey serum was selective for the alternative pathway and occurred at concentrations ≥ 50 μg/mL ISIS 2302.
View Article and Find Full Text PDFThe New York City Clinical Data Research Network (NYC-CDRN), funded by the Patient-Centered Outcomes Research Institute (PCORI), brings together 22 organizations including seven independent health systems to enable patient-centered clinical research, support a national network, and facilitate learning healthcare systems. The NYC-CDRN includes a robust, collaborative governance and organizational infrastructure, which takes advantage of its participants' experience, expertise, and history of collaboration. The technical design will employ an information model to document and manage the collection and transformation of clinical data, local institutional staging areas to transform and validate data, a centralized data processing facility to aggregate and share data, and use of common standards and tools.
View Article and Find Full Text PDFBackground: The stability and propagation of hepatitis C virus (HCV) is dependent on a functional interaction between the HCV genome and liver-expressed microRNA-122 (miR-122). Miravirsen is a locked nucleic acid-modified DNA phosphorothioate antisense oligonucleotide that sequesters mature miR-122 in a highly stable heteroduplex, thereby inhibiting its function.
Methods: In this phase 2a study at seven international sites, we evaluated the safety and efficacy of miravirsen in 36 patients with chronic HCV genotype 1 infection.
This document summarizes the current consensus opinion of the Exaggerated Pharmacology (EP) Subcommittee of the Oligonucleotide Safety Working Group on the appropriate strategies to assess potential adverse effects caused by an "exaggerated" degree of the intended pharmacologic activity of an oligonucleotide (ON). The Subcommittee focused its discussions primarily on the ON subclasses that impact expression of "host" (i.e.
View Article and Find Full Text PDFNucleic Acid Ther
August 2012
MicroRNAs are endogenous small non-coding RNAs that regulate gene expression by interfering with translation or stability of target transcripts. The importance of microRNAs for maintaining biological functions is illustrated by the fact that microRNAs are exploited in nature to regulate phenotypes, and by the diverse disease phenotypes that result when microRNAs are mutated or improperly expressed. Disease-associated microRNAs might therefore represent a new class of therapeutic targets.
View Article and Find Full Text PDFThe primary target organ for uptake of systemically administered phosphorothioate oligonucleotides is the kidney cortex and the proximal tubular epithelium in particular. To determine the effect of oligonucleotide uptake on renal function, a detailed renal physiology study was performed in cynomolgus monkeys treated with 10-40 mg/kg/week ISIS 113715 for 4 weeks. The concentrations of oligonucleotide in the kidney cortex ranged from 1400 to 2600 μg/g.
View Article and Find Full Text PDFRarely a new research area has gotten such an overwhelming amount of attention as have microRNAs. Although several basic questions regarding their biological principles still remain to be answered, many specific characteristics of microRNAs in combination with compelling therapeutic efficacy data and a clear involvement in human disease have triggered the biotechnology community to start exploring the possibilities of viewing microRNAs as therapeutic entities. This review serves to provide some general insight into some of the current microRNAs targets, how one goes from the initial bench discovery to actually developing a therapeutically useful modality, and will briefly summarize the current patent landscape and the companies that have started to explore microRNAs as the next drug target.
View Article and Find Full Text PDFThe identification of the Duchenne muscular dystrophy gene and protein in the late 1980s led to high hopes of rapid translation to molecular therapeutics. These hopes were fueled by early reports of delivering new functional genes to dystrophic muscle in mouse models using gene therapy and stem cell transplantation. However, significant barriers have thwarted translation of these approaches to true therapies, including insufficient therapeutic material (eg, cells and viral vectors), challenges in systemic delivery, and immunological hurdles.
View Article and Find Full Text PDFProtein tyrosine phosphatase (PTP)-1B antagonizes insulin signaling and is a potential therapeutic target for insulin resistance associated with obesity and type 2 diabetes. To date, studies of PTP-1B have been limited by the availability of specific antagonists; however, treatment of rodents with antisense oligonucleotides (ASOs) directed against PTP-1B improves insulin sensitivity, inhibits lipogenic gene expression, and reduces triglyceride accumulation in liver and adipose tissue. Here we investigated ASO-mediated PTP-1B inhibition in primates.
View Article and Find Full Text PDFThe in vivo pharmacokinetics/pharmacodynamics of 2'-O-(2-methoxyethyl) (2'-MOE) modified antisense oligonucleotides (ASOs), targeting apolipoprotein B-100 (apoB-100), were characterized in multiple species. The species-specific apoB antisense inhibitors demonstrated target apoB mRNA reduction in a drug concentration and time-dependent fashion in mice, monkeys, and humans. Consistent with the concentration-dependent decreases in liver apoB mRNA, reductions in serum apoB, and LDL-C, and total cholesterol were concurrently observed in animal models and humans.
View Article and Find Full Text PDFISIS 2302 is a phosphorothioate oligonucleotide designed to inhibit human ICAM-1 and is intended for treatment of inflammatory diseases. Molecules of this class are known to elicit pro-inflammatory effects, and immunotoxicity studies were performed in mice to elucidate the nature of effects of ISIS 2302 on mammalian immune function. ISIS 2302 (1, 5, 20, or 50 mg/kg/dose) was administered intravenously every other day for 27 days.
View Article and Find Full Text PDFProinflammatory effects caused by oligodeoxynucleotides (ODN) include cytokine production, splenomegaly and infiltration of mononuclear cells into tissues. Presence of one or more CpG motifs in an ODN sequence confers potency for proinflammatory properties. The objective of this research was to characterize the proinflammatory effects produced by CpG containing ODN as compared to non-CpG ODN using gene array analysis.
View Article and Find Full Text PDFBackground: Although research demonstrates that allergy immunotherapy (IT) improves allergic rhinitis (AR) outcomes, little is known about IT patterns of care and associated resource use and costs among US children with diagnoses of AR.
Objective: We sought to examine characteristics associated with receiving IT, patterns of IT care, and health care use and costs incurred in the 6 months before versus after IT.
Methods: We performed retrospective Florida Medicaid claims data (1997-2004) analysis of children (<18 years of age) given new diagnoses of AR.